|
|
|
Литература
|
|
|
1. |
А. В. Ефимов, Математический анализ (специальные разделы), т. 1, Высшая школа, 1980 |
2. |
И. А. Ибpагимов, С. С. Подкорытов, “О случайных вещественных алгебpаических повеpхностях”, Докл. Акад. Наук, 343:6 (1995), 734–736 |
3. |
М. Кац, Вероятность и смежные вопросы в физике, Едиториал УРСС, 2003 |
4. |
А. Н. Колмогоров, Основные понятия теории вероятностей, ФАЗИС, 1998 |
5. |
Р. Хорн, Ч. Джонсон, Матричный анализ, Мир, 1989 |
6. |
A. Edelman, E. Kostlan, “How many zeros of a random polynomial are real”, Bull. Amer. Math. Soc., 32:1 (1995), 1–37 |
7. |
H. Federer, “Curvature measures”, Trans. Amer. Math. Soc., 93 (1959), 418–491 |
8. |
M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320 |
9. |
E. Kostlan, “On the distribution of roots of random polynomials”, From Topology to Computation, Proceedings of the Smalefest, Springer, 1993, 419–431 |
10. |
H. J. Landau, L. A. Shepp, “On the supremum of a Gaussian process”, Sankhya Ser. A, 32 (1970), 369–378 |
11. |
C. Qualls, “On the number of zeros of a stationary Gaussian random trigonometric polynomial”, J. London Math. Soc., 2:2 (1970), 216–220 |
12. |
S. O. Rice, “Mathematical analysis of random noise”, Bell System Technical Journal, 24 (1945), 46–156 |
13. |
M. Shub, S. Smale, “Complexity of Bézout's theorem II: volumes and probabilities”, Computational Algebraic Geometry, 109 (1993), 267–285 |