RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2011, Volume 386, Pages 242–264 (Mi znsl3914)

Width of groups of type $\mathrm E_6$ with respect to root elements. II
I. M. Pevzner

References

1. A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59  mathscinet
2. N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972  mathscinet  zmath
3. N. Burbaki, Gruppy i algebry Li, Glavy VII–VIII, Mir, M., 1978  mathscinet
4. N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68  mathnet  mathscinet  elib
5. N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87  mathnet  mathscinet  zmath
6. N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76  mathnet  mathscinet  zmath
7. N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64  mathnet  mathscinet  elib
8. N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68  mathnet  mathscinet  zmath
9. N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83  mathnet  mathscinet
10. E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988  mathscinet
11. A. Yu. Luzgarev, “O nadgruppakh $\mathrm E(\mathrm E_6,R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 319, 2004, 216–243  mathnet  mathscinet  zmath
12. A. Yu. Luzgarev, “Opisanie nadgrupp $\mathrm F_4$$\mathrm E_6$ nad kommutativnym koltsom”, Algebra i analiz, 20:6 (2008), 148–185  mathnet  mathscinet  elib
13. O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167  mathscinet
14. O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979
15. I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 2011 (to appear)
16. I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, I”, Algebra i analiz, 2011 (to appear)
17. T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136  mathnet  mathscinet  zmath
18. R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975  mathscinet  zmath
19. Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980  mathscinet
20. Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003
21. M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, I”, Invent. Math., 89:1 (1987), 159–195  crossref  mathscinet  zmath  adsnasa  isi
22. M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, II”, J. London Math. Soc., 37 (1988), 275–293  crossref  mathscinet  zmath
23. M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, III”, Trans. Amer. Math. Soc., 321 (1990), 45–84  crossref  mathscinet  zmath  isi
24. M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, IV”, J. Algebra, 131 (1990), 23–39  crossref  mathscinet  zmath  isi
25. M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465  mathscinet  zmath  isi
26. M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, Oxford, 1990, 75–84  mathscinet
27. R. W. Carter, Simple groups of Lie type, Wiley, London, 1989  mathscinet  zmath
28. C. Chevalley, R. D. Schafer, “The exceptional simple Lie algebras $\mathrm F_4$ and $\mathrm E_6$”, Proc. Nat. Acad. Sci. USA, 36 (1950), 137–141  crossref  mathscinet  zmath  adsnasa
29. A. M. Cohen, M. W. Liebeck, J. Saxl, G. M. Seitz, “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc., 364:1 (1992), 21–48  crossref  mathscinet
30. D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$”, Communications in Algebra, 19:3 (1991), 889–903  crossref  mathscinet  zmath  isi
31. J. Dieudonné, “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–179  mathscinet
32. D. Ž. Djoković, J. G. Malzan, “Products of reflections in the general linear group over a division ring”, Linear Algebra Appl., 28 (1979), 53–62  crossref  mathscinet  zmath
33. D. Ž. Djoković, J. G. Malzan, Products of reflections in $\mathrm U(p,q)$, Mem. Amer. Math. Soc., 37, Amer. Math. Soc., Providence, RI, 1982  mathscinet  zmath
34. R. H. Dye, “Scherk's theorem on orthogonalities revisited”, Geom. Dedicata, 20:3 (1986), 349–356  crossref  mathscinet  zmath  isi
35. E. W. Ellers, “Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries”, Abh. Math. Sem. Univ. Hamburg, 46 (1977), 97–127  crossref  mathscinet  zmath
36. E. W. Ellers, R. Frank, “Products of quasireflections and transvections over local rings”, J. Geom., 31:1–2 (1988), 69–78  crossref  mathscinet  zmath
37. E. W. Ellers, H. Ishibashi, “Factorization of transformations over a local ring”, Linear Algebra Appl., 85 (1987), 12–27  crossref  mathscinet  isi
38. E. W. Ellers, H. Lausch, “Length theorems for the general linear group of a module over a local ring”, J. Austral. Math. Soc. Ser. A, 46:1 (1989), 122–131  crossref  mathscinet  zmath
39. E. W. Ellers, H. Lausch, “Generators for classical groups of modules over local rings”, J. Geom., 39:1–2 (1990), 60–79  crossref  mathscinet  zmath
40. P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416  mathscinet  zmath  isi
41. M. Götzky, “Unverkürzbare Produkte und Relationen in unitären Gruppen”, Math. Z., 104 (1968), 1–15  crossref  mathscinet  zmath
42. M. Götzky, “Über die Erzeugenden der engeren unitären Gruppen”, Arch. Math., 19 (1968), 383–389  crossref  mathscinet  zmath
43. H. Ishibashi, “Generators of orthogonal groups over a local valuation domain”, J. Algebra, 55:2 (1978), 302–307  crossref  mathscinet  zmath
44. H. Ishibashi, “Generators of $\mathrm{Sp}_n(V)$ over a quasisemilocal semihereditary ring”, J. Pure Appl. Algebra, 22:2 (1981), 121–129  crossref  mathscinet  zmath  isi
45. H. Ishibashi, “Generators of orthogonal groups over valuation rings”, Canad. J. Math., 33:1 (1981), 116–128  crossref  mathscinet  zmath  isi
46. G. Malle, J. Saxl, T. S. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116  crossref  mathscinet  zmath  isi
47. H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2:1 (1969), 1–62  mathscinet  zmath
48. Ch. Parker, G. E. Röhrle, Miniscule Representations, Preprint № 72, Universität Bielefeld, 1993, 12 pp.  mathscinet  zmath
49. E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra and Computations, 8:1 (1998), 61–97  crossref  mathscinet  isi
50. U. Spengler, H. Wolff, “Die Länge einer symplektischen Abbildung”, J. reine angew. Math., 274–275 (1975), 150–157  mathscinet  zmath
51. T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998  mathscinet  zmath
52. C. Stanley-Albarda, “A comparison of length definitions for maps of modules over local rings”, J. Geom., 53:1–2 (1995), 191–200  crossref  mathscinet  zmath
53. J. Tits, “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Publ. Math. Inst. Hautes Et. Sci., 31 (1966), 21–58  crossref  mathscinet
54. N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335  mathscinet  zmath
55. N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 204 (2000), 1–45  mathscinet
56. N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $E_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104  mathnet  mathscinet  zmath
57. N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra and Computations, 17:5–6 (2007), 1283–1298  crossref  mathscinet  zmath  isi
58. N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115  crossref  mathscinet  isi
59. L. G. Zhou, “Scherk's theorem of orthogonal groups over a local ring. I. Expressing orthogonal transformations as the product of symmetries and a semi-symmetry”, Dongbei Shida Xuebao, 2 (1985), 17–24  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025