|
|
|
References
|
|
|
1. |
A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 |
2. |
N. Burbaki, Gruppy i algebry Li, Glavy IV–VI, Mir, M., 1972 |
3. |
N. Burbaki, Gruppy i algebry Li, Glavy VII–VIII, Mir, M., 1978 |
4. |
N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 |
5. |
N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $\mathrm E_6$ i $\mathrm E_7$”, Algebra i analiz, 16:4 (2004), 54–87 |
6. |
N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 |
7. |
N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 |
8. |
N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v 27-mernom predstavlenii”, Zap. nauchn. semin. POMI, 338, 2006, 5–68 |
9. |
N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83 |
10. |
E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 |
11. |
A. Yu. Luzgarev, “O nadgruppakh $\mathrm E(\mathrm E_6,R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 319, 2004, 216–243 |
12. |
A. Yu. Luzgarev, “Opisanie nadgrupp $\mathrm F_4$ v $\mathrm E_6$ nad kommutativnym koltsom”, Algebra i analiz, 20:6 (2008), 148–185 |
13. |
O. O'Mira, “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167 |
14. |
O. O'Mira, Lektsii o simplekticheskikh gruppakh, Mir, M., 1979 |
15. |
I. M. Pevzner, “Geometriya kornevykh elementov v gruppakh tipa $\mathrm E_6$”, Algebra i analiz, 2011 (to appear) |
16. |
I. M. Pevzner, “Shirina grupp tipa $\mathrm E_6$ otnositelno mnozhestva kornevykh elementov, I”, Algebra i analiz, 2011 (to appear) |
17. |
T. A. Springer, “Lineinye algebraicheskie gruppy”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. problemy mat. Fundam. napravleniya, 55, VINITI, M., 1989, 5–136 |
18. |
R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 |
19. |
Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 |
20. |
Dzh. Khamfri, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003 |
21. |
M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, I”, Invent. Math., 89:1 (1987), 159–195 |
22. |
M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, II”, J. London Math. Soc., 37 (1988), 275–293 |
23. |
M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 |
24. |
M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$, IV”, J. Algebra, 131 (1990), 23–39 |
25. |
M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 |
26. |
M. Aschbacher, “The geometry of trilinear forms”, Finite Geometries, Buildings and Related topics, Oxford Univ. Press, Oxford, 1990, 75–84 |
27. |
R. W. Carter, Simple groups of Lie type, Wiley, London, 1989 |
28. |
C. Chevalley, R. D. Schafer, “The exceptional simple Lie algebras $\mathrm F_4$ and $\mathrm E_6$”, Proc. Nat. Acad. Sci. USA, 36 (1950), 137–141 |
29. |
A. M. Cohen, M. W. Liebeck, J. Saxl, G. M. Seitz, “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc., 364:1 (1992), 21–48 |
30. |
D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type $\mathrm E_6$, $\mathrm E_7$ and $\mathrm E_8$”, Communications in Algebra, 19:3 (1991), 889–903 |
31. |
J. Dieudonné, “Sur les générateurs des groupes classiques”, Summa Brasil. Math., 3 (1955), 149–179 |
32. |
D. Ž. Djoković, J. G. Malzan, “Products of reflections in the general linear group over a division ring”, Linear Algebra Appl., 28 (1979), 53–62 |
33. |
D. Ž. Djoković, J. G. Malzan, Products of reflections in $\mathrm U(p,q)$, Mem. Amer. Math. Soc., 37, Amer. Math. Soc., Providence, RI, 1982 |
34. |
R. H. Dye, “Scherk's theorem on orthogonalities revisited”, Geom. Dedicata, 20:3 (1986), 349–356 |
35. |
E. W. Ellers, “Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries”, Abh. Math. Sem. Univ. Hamburg, 46 (1977), 97–127 |
36. |
E. W. Ellers, R. Frank, “Products of quasireflections and transvections over local rings”, J. Geom., 31:1–2 (1988), 69–78 |
37. |
E. W. Ellers, H. Ishibashi, “Factorization of transformations over a local ring”, Linear Algebra Appl., 85 (1987), 12–27 |
38. |
E. W. Ellers, H. Lausch, “Length theorems for the general linear group of a module over a local ring”, J. Austral. Math. Soc. Ser. A, 46:1 (1989), 122–131 |
39. |
E. W. Ellers, H. Lausch, “Generators for classical groups of modules over local rings”, J. Geom., 39:1–2 (1990), 60–79 |
40. |
P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 |
41. |
M. Götzky, “Unverkürzbare Produkte und Relationen in unitären Gruppen”, Math. Z., 104 (1968), 1–15 |
42. |
M. Götzky, “Über die Erzeugenden der engeren unitären Gruppen”, Arch. Math., 19 (1968), 383–389 |
43. |
H. Ishibashi, “Generators of orthogonal groups over a local valuation domain”, J. Algebra, 55:2 (1978), 302–307 |
44. |
H. Ishibashi, “Generators of $\mathrm{Sp}_n(V)$ over a quasisemilocal semihereditary ring”, J. Pure Appl. Algebra, 22:2 (1981), 121–129 |
45. |
H. Ishibashi, “Generators of orthogonal groups over valuation rings”, Canad. J. Math., 33:1 (1981), 116–128 |
46. |
G. Malle, J. Saxl, T. S. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 |
47. |
H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2:1 (1969), 1–62 |
48. |
Ch. Parker, G. E. Röhrle, Miniscule Representations, Preprint № 72, Universität Bielefeld, 1993, 12 pp. |
49. |
E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra and Computations, 8:1 (1998), 61–97 |
50. |
U. Spengler, H. Wolff, “Die Länge einer symplektischen Abbildung”, J. reine angew. Math., 274–275 (1975), 150–157 |
51. |
T. A. Springer, Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser Boston Inc., Boston, 1998 |
52. |
C. Stanley-Albarda, “A comparison of length definitions for maps of modules over local rings”, J. Geom., 53:1–2 (1995), 191–200 |
53. |
J. Tits, “Sur les constantes de structure et le théorème d'existence des algèbres de Lie semi-simples”, Publ. Math. Inst. Hautes Et. Sci., 31 (1966), 21–58 |
54. |
N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 |
55. |
N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 204 (2000), 1–45 |
56. |
N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $E_l$”, Zap. nauchn. semin. POMI, 281, 2001, 60–104 |
57. |
N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra and Computations, 17:5–6 (2007), 1283–1298 |
58. |
N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 |
59. |
L. G. Zhou, “Scherk's theorem of orthogonal groups over a local ring. I. Expressing orthogonal transformations as the product of symmetries and a semi-symmetry”, Dongbei Shida Xuebao, 2 (1985), 17–24 |