|
|
|
References
|
|
|
1. |
B. Yu. Veisfeiler, A. A. Leman, “Privedenie grafa k kanonicheskomu vidu i voznikayuschaya pri etom algebra”, NTI, ser. 2, 9 (1968), 12–16 |
2. |
S. Evdokimov, I. Ponomarenko, “Raspoznavanie i proverka izomorfizma tsirkulyantnykh grafov za
polinomialnoe vremya”, Algebra i analiz, 15:6 (2003), 1–34 |
3. |
L. Babai, E. M. Luks, “Canonical labeling of graphs”, Proc. 15th ACM STOC, 1983, 171–183 |
4. |
A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer, Berlin, 1989 |
5. |
J. D. Dixon, B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996 |
6. |
S. Evdokimov, I. Ponomarenko, “Separability number and schurity number of coherent configurations”, Electronic Journal of Combinatorics, 7 (2000), R31 |
7. |
D. G. Higman, “Coherent configurations, 1”, Rend. Mat. Sem. Padova, 44 (1970), 1–25 |
8. |
M. Klin, M. Muzychuk, R. Pöschel, “The isomorphism problem for circulant graphs via Schur rings theory”, Codes and association schemes, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 56, Amer. Math. Soc., Providence, RI, 2001, 241–264 |
9. |
E. M. Luks, “Permutation groups and polynomial-time computation”, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 11, 1993, 139–175 |
10. |
R. Mathon, “A note on the graph isomorphism counting problem”, Inform. Process. Lett., 8 (1979), 131–132 |
11. |
M. Muzychuk, “A solution of the isomorphism problem for circulant graphs”, Proc. London Math. Soc., 88 (2004), 1–41 |
12. |
I. Ponomarenko, “Polynomial-time algorithms for recognizing and isomorphism testing
of cyclic tournaments”, Acta Appl. Math., 29 (1992), 139–160 |
13. |
B. Weisfeiler (ed.), On construction and identification of graphs, Lecture Notes, 558, Springer Lecture Notes, 1976 |
14. |
H. Wielandt, Finite permutation groups, Academic Press, New York-London, 1964 |