RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2011, Volume 391, Pages 79–89 (Mi znsl4569)

On proper colorings of hypergraphs
N. V. Gravin, D. V. Karpov

References

1. G. Agnarsson, M. M. Halldoŕsson, “Strong Colorings of Hypergraphs”, Approximation and Online Algorithms, Lecture Notes in Computer Science, 3351, 2005, 253–266  crossref  mathscinet  zmath
2. N. Alon, Z. Bregman, “Every 8-uniform 8-regular hypergraph is 2-colorable”, Graphs Combinat., 4 (1988), 303–305  crossref  mathscinet  isi
3. N. Alon, J. Spencer, The probabilistic method, Wiley-Interscience, New York, 2000  mathscinet  zmath
4. J. Beck, “On a combinatorial problem of P. Erdős and L. Lovász”, Discrete Math., 17 (1977), 127–131  crossref  mathscinet  zmath
5. J. Beck, “On 3-chromatic hypergraphs”, Discrete Math., 24 (1978), 127–137  crossref  mathscinet  zmath
6. P. Erdős, “On a combinatorial problem”, Nordisk Mat. Tidskr., 11 (1963), 5–10  mathscinet  zmath
7. P. Erdős, “On a combinatorial problem”, Acta Math Acad. Sci. Hungar., 15 (1964), 445–447  crossref  mathscinet  zmath
8. P. Erdős L. Lovász, “Problems and results on 3-chromatic hypergraphs and some related questions”, Infinite and finite sets, Colloq. Math. Soc. J. Bolyai, 10, North Holland, Amsterdam, 1974, 609–627  mathscinet
9. L. Hong-Jian, B. Montgomery, H. Poon, “Upper Bounds of Dynamic Chromatic Number”, Ars. Combinatoria, 68 (2003), 193–201  mathscinet  zmath  isi
10. A. Kostochka, “Coloring uniform hypergraphs with few colors”, Random Structures and Algorithms, 24 (2004), 1–10  crossref  mathscinet  zmath  isi
11. A. Pluhár, “Greedy colorings of uniform hypergraphs”, Random Structures and Algorithms, 35 (2009), 216–221  crossref  mathscinet  zmath  isi
12. W. M. Schmidt, “Ein kombinatoriches problem”, Acta Math. Acad. Sci. Hungar., 15 (1964), 373–374  crossref  mathscinet  zmath
13. J. H. Spencer, “Coloring $n$-sets red and blue”, J. Combin Theory Ser. A, 30 (1981), 112–113  crossref  mathscinet  zmath  isi
14. C. Thomassen, “The even cycle problem for directed graphs”, J. Amer. Math. Soc., 5 (1992), 217–229  crossref  mathscinet  zmath
15. N. V. Gravin, “Nevyrozhdennye raskraski v teoreme Bruksa”, Diskr. matem., 21:4 (2009), 105–128  mathnet  crossref  mathscinet  zmath  elib
16. D. V. Karpov, “Dinamicheskie pravilnye raskraski vershin grafa”, Zap. nauchn. semin. POMI, 381, 2010, 47–77  mathnet  mathscinet


© Steklov Math. Inst. of RAS, 2025