|
|
|
Литература
|
|
|
1. |
C. Alves, A. L. Silvestre, T. Takahashi, M. Tucsnak, “Solving inverse source problems using observability. Applications to the Euler–Bernoulli plate equation”, SIAM J. Control Optim., 48:3 (2009), 1632–1659 |
2. |
S. A. Avdonin, A. S. Bulanova, “Boundary control approach to the spectral estimation problem. The case of multiple poles”, Math. Contr. Sign. Syst., 22:3 (2011), 245–265 |
3. |
S. A. Avdonin, A. S. Bulanova, D. Nicolsky, “Boundary control approach to the spectral estimation problem. The case of simple poles”, Sampling Theory in Signal and Image Processing, 8:3 (2009), 225–248 |
4. |
S. Avdonin, F. Gesztesy, K. A. Makarov, “Spectral estimation and inverse initial boundary value problems”, Inverse Probl. Imaging, 4:1 (2010), 1–9 |
5. |
S. Avdonin, S. Ivanov, Families of Exponentials, Cambridge University Press, Cambridge, 1995 |
6. |
S. Avdonin, V. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009, 19 pp. |
7. |
S. Avdonin, V. Mikhaylov, “Inverse source problem for the 1-D Schrödinger equation”, Zap. Nauchn. Semin. POMI, 393, 2011, 5–11 |
8. |
S. Avdonin, V. Mikhaylov, K. Ramdani, Reconstructing the potential for the 1D Schrödinger equation from boundary measurements, submitted |
9. |
L. Baudouin, J.-P. Puel, “Uniqueness and stability in an inverse problem for the Schrödinger equation”, Inverse Problems, 18:6 (2002), 1537–1554 |
10. |
M. Bellassoued, M. Choulli, “Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation”, J. Math. Pures Appl., 91 (2009), 233–255 |
11. |
M. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17:4 (2001), 659–682 |
12. |
M. Belishev, “On a relation between data of dynamic and spectral inverse problems”, Zap. Nauchn. Semin. POMI, 297, 2003, 30–48 |
13. |
M. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 |
14. |
A. Mercado, A. A. Osses, L. Rosier, “Carleman inequalities and inverse problems for the Schrödinger equation”, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 53–58 |
15. |
K. Ramdani, M. Tucsnak, G. Weiss, “Recovering the initial state of an infinite-dimensional system using observers”, Automatica, 46 (2010), 1616–1625 |
16. |
M. Tucsnak, G. Weiss, Observation and control for operator semigroups, Birkhaüser Advanced Texts, Basler Lehrbucher [Birkhaüser Advanced Texts, Basel Textbooks], Birkhaüser Verlag, Basel, 2009, xii+483 pp. |
17. |
M. Yamamoto, “Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method”, Inverse Problems, 11:2 (1995), 481–496 |