RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2013, Volume 419, Pages 26–42 (Mi znsl5736)

Arithmetic matrix operations that preserve conversion
M. V. Budrevich

References

1. R. A. Brualdi, B. L. Shader, “On Sing-nonsigular matrices and the conversion of the permanent into the determinant”, DIMACS Ser. Discrete Math. Theor. Comput. Sci., 4 (1991), 117–134  mathscinet  zmath
2. M. V. Budrevich, A. E. Guterman, “Permanent has less zeros than determinant over finite fields”, Amer. Math. Soc., Contemp. Math., 579 (2012), 33–42  crossref  mathscinet  zmath  isi
3. M. P. Coelho, M. A. Duffner, “Immanant preserving and immanant converting maps”, Linear Algebra Appl., 418:1 (2006), 177–187  crossref  mathscinet  zmath  isi
4. A. Guterman, G. Dolinar, B. Kuzma, “Problema Polia o konvertiruemosti dlya simmetricheskikh matrits”, Mat. zametki, 92:5 (2012), 684–698  mathnet  crossref  zmath  elib
5. A. Guterman, G. Dolinar, B. Kuzma, “Barery Gibsona dlya problemy Polia”, Fundam. prikl. matem., 16:8 (2010), 73–86  mathnet  mathscinet  elib
6. J. von zur Gathen, “Permanent and determinant”, Linear Algebra Appl., 96 (1987), 87–100  crossref  mathscinet  zmath  isi
7. P. M. Gibson, “Conversion of the permanent into the determinant”, Proc. Amer. Math. Soc., 27 (1971), 471–476  crossref  mathscinet  zmath
8. B. Kuzma, “Ob otobrazheniyakh, sokhranyayuschikh immananty”, Fundam. prikl. matem., 13:4 (2007), 113–120  mathnet  mathscinet  zmath  elib
9. C. H. C. Little, “A characterization of convertible $(0;1)$-matrices”, J. Combin. Theory Ser. B, 18 (1975), 187–208  crossref  mathscinet  zmath
10. M. Marcus, H. Minc, “On the relation between the determinant and the permanent”, Illinois J. Math., 5 (1961), 376–381  mathscinet  zmath
11. Kh. Mink, Permanenty, Mir, M., 1982  mathscinet
12. G. Polya, “Aufgabe 424”, Arch. Math. Phys., 20:3 (1913), 271
13. N. Robertson, P. D. Seymour, R. Thomas, “Permanents, Pfaffian orientations, and even directed circuits”, Anals Math., 150 (1999), 929–975  crossref  mathscinet  zmath  isi
14. L. G. Valiant, “The complexity of computing the permanent”, Theor. Comput. Sci., 8 (1979), 189–201  crossref  mathscinet  zmath
15. V. V. Vazirani, M. Yannakakis, “Pfaffian orientations, $0-1$ permanents, and even cycles in directed graphs”, Discrete Appl. Math., 25 (1989), 179–190  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025