RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2013, Volume 419, Pages 139–153 (Mi znsl5742)

Bounds for the largest two eigenvalues of the signless Laplacian
L. Yu. Kolotilina

References

1. L. Yu. Kolotilina, “Ob uluchshenii otsenok Chistyakova dlya perronovskogo kornya neotritsatelnroi matritsy”, Zap. nauchn. semin. POMI, 346, 2007, 103–118  mathnet  mathscinet
2. A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979  mathscinet  zmath
3. Chen Yan, “Properties of spectra of graphs and line graphs”, Appl. Math. J. Chinese Univ., Ser. B, 17 (2002), 371–376  crossref  mathscinet  zmath
4. D. Cvetković, P. Rowlinson, S. K. Simić, “Signless Laplacians of finite graphs”, Linear Algebra Appl., 423 (2007), 155–171  crossref  mathscinet  zmath  isi
5. D. Cvetković, P. Rowlinson, S. K. Simić, “Eigenvalue bounds for the signless Laplacians”, Publ. Inst. Math. (Beogr.) (N.S.), 81(95) (2007), 11–27  crossref  mathscinet  zmath
6. K. Ch. Das, “On conjectures involving second largest signless Laplacian eigenvalue of graphs”, Linear Algebra Appl., 432 (2010), 3018–3029  crossref  mathscinet  zmath  isi
7. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1986
8. J. S. Li, Y. L. Pan, “A note on the second largest eigenvalue of the Laplacian matrix of a graph”, Linear Multilinear Algebra, 48 (2000), 117–121  crossref  mathscinet  zmath  isi
9. R. Merris, “Laplacian matrices of graphs: A survey”, Linear Algebra Appl., 197 (1994), 143–176  crossref  mathscinet  zmath
10. H. Minc, Nonnegative Matrices, John Wiley and Sons, New York etc., 1988  mathscinet
11. L. Silva de Lima, V. Nikiforov, “On the second largest eigenvalue of the signless Laplacian”, Linear Algebra Appl., 438 (2013), 1215–1222  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025