RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2014, Volume 427, Pages 74–88 (Mi znsl6044)

On Heawood-type problem for maps with tangencies
G. V. Nenashev

References

1. K. Appel, W. Haken, Every Planar Map Is Four Colorable, Contemp. Math., 98, A.M.S., 1989  crossref  mathscinet  zmath
2. K. Appel, W. Haken, “Every map is four colourable, Part I: Discharging”, Illinois Journal of Mathematics, 21 (1977), 429–490  mathscinet  zmath
3. K. Appel, W. Haken, “Every map is four colourable, Part II: Reducibility”, Illinois Journal of Mathematics, 21 (1977), 491–567  mathscinet  zmath
4. O. V. Borodin, “Solution of Ringel's problems on vertex-face coloring of plane graphs and coloring of 1-planar graphs”, Met. Diskret. Anal., 41 (1984), 12–26  mathscinet  zmath
5. P. J. Heawood, “Map colour theorem”, Quart. J. Math., 24 (1890), 332–338  zmath
6. G. V. Nenashev, “Otsenka khromaticheskogo chisla pochti planarnogo grafa”, Zap. nauchn. semin. POMI, 406, 2012, 95–106  mathnet  mathscinet
7. G. Ringel, J. W. T. Youngs, “Solution of the Heawood map-coloring problem”, Proc. Nat. Acad. Sci. USA, 60:2 (1968), 438–445  crossref  mathscinet  zmath  adsnasa
8. N. Robertson, D. Sanders, P. Seymour, R. Thomas, “The Four-Colour Theorem”, J. Comb.Theory, Series B, 70 (1997), 2–44  crossref  mathscinet  zmath  isi


© Steklov Math. Inst. of RAS, 2025