|
|
|
References
|
|
|
1. |
K. Appel, W. Haken, Every Planar Map Is Four Colorable, Contemp. Math., 98, A.M.S., 1989 |
2. |
K. Appel, W. Haken, “Every map is four colourable, Part I: Discharging”, Illinois Journal of Mathematics, 21 (1977), 429–490 |
3. |
K. Appel, W. Haken, “Every map is four colourable, Part II: Reducibility”, Illinois Journal of Mathematics, 21 (1977), 491–567 |
4. |
O. V. Borodin, “Solution of Ringel's problems on vertex-face coloring of plane graphs and coloring of 1-planar graphs”, Met. Diskret. Anal., 41 (1984), 12–26 |
5. |
P. J. Heawood, “Map colour theorem”, Quart. J. Math., 24 (1890), 332–338 |
6. |
G. V. Nenashev, “Otsenka khromaticheskogo chisla pochti planarnogo grafa”, Zap. nauchn. semin. POMI, 406, 2012, 95–106 |
7. |
G. Ringel, J. W. T. Youngs, “Solution of the Heawood map-coloring problem”, Proc. Nat. Acad. Sci. USA, 60:2 (1968), 438–445 |
8. |
N. Robertson, D. Sanders, P. Seymour, R. Thomas, “The Four-Colour Theorem”, J. Comb.Theory, Series B, 70 (1997), 2–44 |