RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2018, Volume 471, Pages 150–167 (Mi znsl6631)

Green’s function for the Helmholtz equation in a polygonal domain of special form with ideal boundary conditions
M. A. Lyalinov

References

1. V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Sci. Ser. Wave Phenom., Alpha Science, Oxford, 2008
2. M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information & Communication, SciTech-IET, Edison, NJ, 2012
3. J.-M. L. Bernard, “A spectral approach for scattering by impedance polygons”, Q. J. Mech. Appl. Math., 59:4 (2006), 517–550  crossref  mathscinet  zmath
4. M. A. Lyalinov, “Integral equations and the scattering diagram in the problem of diffraction by two contacting wedges with polygonal boundary”, J. Math. Sci., 214:3 (2016), 322–336  mathnet  crossref  mathscinet  zmath
5. D. S. Jones, “The Kontorovich-Lebedev transform”, J. Inst. Maths Appl., 26 (1980), 133–141  crossref  mathscinet  zmath
6. A. D. Avdeev, S. M. Grudskii, “O modifitsirovannom preobrazovanii Kontorovicha-Lebedeva i ego prilozhenii k zadache difraktsii tsilindricheskoi volny na idealno provodyaschem kline”, Radiotekhnika i elektronika, 39:7 (1994), 1081–1089
7. J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181  crossref  mathscinet  zmath
8. I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980  mathscinet
9. L. S. Rakovschik, “Sistemy integralnykh uranenii s pochti raznostnymi operatorami”, Sibirskii Mat. Zhurnal, 3:2 (1962), 250–255  mathnet


© Steklov Math. Inst. of RAS, 2025