RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2018, Volume 473, Pages 99–109 (Mi znsl6657)

On differential operators for Chebyshev polynomials of several variables
E. V. Damaskinskiy, M. A. Sokolov

References

1. T. H. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I–IV”, Indagationes Mathematicae, 77 (1974), 48–66  crossref  mathscinet  zmath; 357–381  zmath
2. T. H. Koornwinder, “Two-variable analogues of the classical orthogonal polynomials”, Theory and application of special functions, ed. R. A. Askey, Academic Press, 1975, 435–495  crossref  mathscinet
3. G. J. Heckman, “Root systems and hypergeometric functions: II”, Comp. Math., 64 (1987), 353–373  mathscinet  zmath
4. M. E. Hoffman, W. D. Withers, “Generalized Chebyshev polynomials associated with affine Weyl groups”, Trans. Am. Math. Soc., 308 (1988), 91–104  crossref  mathscinet  zmath
5. R. J. Beerends, “Chebyshev polynomials in several variables and the radial part Laplace–Beltrami operator”, Trans. Am. Math. Soc., 328 (1991), 770–814  crossref  mathscinet
6. A. Klimyk, J. Patera, “Orbit functions”, SIGMA, 4 (2006), 002  mathnet  mathscinet
7. Ken B. Dunn, Rudolf Lidl, “Generalizations of the classical Chebyshev polynomials to polynomials in two variables”, Cz. Math. J., 32 (1982), 516–528  mathscinet  zmath
8. T. Rivlin, The Chebyshev Polynomials, Wiley-Interscience publication, New York, 1974  mathscinet  zmath
9. N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, FML, 1963
10. P. K. Suetin, Ortogonalnye mnogochleny po dvum peremennym, FM, 1988


© Steklov Math. Inst. of RAS, 2025