RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2018, Volume 477, Pages 129–135 (Mi znsl6741)

On spectral asymptotics of the Sturm–Liouville problem with self-conformal singular weight with strong bounded distortion property
U. R. Freiberg, N. V. Rastegaev

References

1. M. G. Krein, “Determination of the density of the symmetric inhomogeneous string by spectrum”, Dokl. Akad. Nauk SSSR, 76:3 (1951), 345–348 (in Russian)  mathscinet
2. T. Fujita, “A fractional dimention, self-similarity and a generalized diffusion operator”, Taniguchi Symp. PMMP (Katata, 1985), 83–90  mathscinet  zmath
3. M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248  crossref  mathscinet  zmath
4. J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys.,, 158 (1991), 93–125  crossref  mathscinet  adsnasa
5. A. I. Nazarov, “Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes”, J. Math. Sci. (New York), 133:3 (2006), 1314–1327  mathnet  crossref  mathscinet
6. U. R. Freiberg, “A Survey on measure geometric Laplacians on Cantor like sets”, Arabian J. Sci. Engineering, 28:1C (2003), 189–198  mathscinet  zmath
7. A. A. Vladimirov, I. A. Sheipak, “On the Neumann problem for the Sturm–Liouville equation with Cantor-type self-similar weight”, Funct. Anal. Appl., 47:4 (2013), 261–270  mathnet  crossref  mathscinet  zmath
8. N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821  mathnet  crossref  mathscinet  zmath
9. N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with arithmetically self-similar weight of a generalized Cantor type”, Funct. Anal. Appl., 52:1 (2018), 70–73  mathnet  crossref  mathscinet  zmath
10. I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839  mathnet  crossref  mathscinet  zmath
11. J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747  crossref  mathscinet  zmath
12. N. Patzschke, “Self-conformal multifractal measures”, Advances Appl. Math., 19 (1997), 486–513  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025