|
|
|
References
|
|
|
1. |
M. G. Krein, “Determination of the density of the symmetric inhomogeneous string by spectrum”, Dokl. Akad. Nauk SSSR, 76:3 (1951), 345–348 (in Russian) |
2. |
T. Fujita, “A fractional dimention, self-similarity and a generalized diffusion operator”, Taniguchi Symp. PMMP (Katata, 1985), 83–90 |
3. |
M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 |
4. |
J. Kigami, M. L. Lapidus, “Weyl's problem for the spectral distributions of Laplacians on p.c.f. self-similar fractals”, Comm. Math. Phys.,, 158 (1991), 93–125 |
5. |
A. I. Nazarov, “Logarithmic $L_2$-small ball asymptotics with respect to self-similar measure for some Gaussian processes”, J. Math. Sci. (New York), 133:3 (2006), 1314–1327 |
6. |
U. R. Freiberg, “A Survey on measure geometric Laplacians on Cantor like sets”, Arabian J. Sci. Engineering, 28:1C (2003), 189–198 |
7. |
A. A. Vladimirov, I. A. Sheipak, “On the Neumann problem for the Sturm–Liouville equation with Cantor-type self-similar weight”, Funct. Anal. Appl., 47:4 (2013), 261–270 |
8. |
N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with self-similar generalized Cantor type weight”, J. Math. Sci. (N. Y.), 210:6 (2015), 814–821 |
9. |
N. V. Rastegaev, “On spectral asymptotics of the Neumann problem for the Sturm–Liouville equation with arithmetically self-similar weight of a generalized Cantor type”, Funct. Anal. Appl., 52:1 (2018), 70–73 |
10. |
I. A. Sheipak, “On the construction and some properties of self-similar functions in the spaces $L_p[0,1]$”, Math. Notes, 81:6 (2007), 827–839 |
11. |
J. E. Hutchinson, “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 |
12. |
N. Patzschke, “Self-conformal multifractal measures”, Advances Appl. Math., 19 (1997), 486–513 |