|
|
|
Литература
|
|
|
1. |
A. Alahmadi, S. P. Glasby, C. E. Praeger, “On the dimension of twisted centralizer codes”, Finite Fields Appl., 48 (2017), 43–59 |
2. |
J. A. Brooke, P. Busch, D. B. Pearson, “Commutativity up to a factor of bounded operators in complex Hilbert space”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458:2017 (2002), 109–118 |
3. |
N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston–Basel–Berlin, 1997 |
4. |
С. М. Чуйко, “О решении билинейного матричного уравнения”, Чебышевский сб., 17:2 (2016), 196–205 |
5. |
G. Dolinar, A. Guterman, B. Kuzma, O. Markova, “Double centralizing theorem with respect to $q$-commutativity relation”, J. Algebra Appl., 18:1 (2019), 1950003 |
6. |
G. Dolinar, A. Guterman, B. Kuzma, O. Markova, “Extremal generalized centralizers in matrix algebras”, Comm. Algebra, 46:7 (2018), 3147–3154 |
7. |
A. Guterman, T. Laffey, O. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 |
8. |
A. E. Guterman, O. V. Markova, “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 |
9. |
А. Э. Гутерман, О. В. Маркова, “Проблема реализуемости значений длины для пары квази-коммутирующих матриц”, Зап. научн. семин. ПОМИ, 439, 2015, 59–73 |
10. |
A. E. Guterman, O. V. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 |
11. |
A. E. Guterman, O. V. Markova, V. Mehrmann, “Length realizability for pairs of quasi-commuting matrices”, Linear Algebra Appl., 568 (2019), 135–154 |
12. |
C. Kassel, Quantum Groups, Graduate Texts Math., 155, Springer-Verlag, New York, 1995 |
13. |
Н. А. Колегов, О. В. Маркова, “Системы порождающих матричных алгебр инцидентности над конечными полями”, Зап. научн. семин. ПОМИ, 472, 2018, 120–144 |
14. |
W. E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 |
15. |
А. И. Мальцев, Основы линейной алгебры, Наука, М., 1970 |
16. |
Yu. I. Manin, Quantum Groups and Non-Commutative Geometry, CRM, Montréal, 1988 |
17. |
О. В. Маркова, “Характеризация коммутативных матричных подалгебр максимальной длины над произвольным полем”, Вестн. Моск. унив. Сер. 1. Математика. Механика, 5 (2009), 53–55 |
18. |
H. Neudecker, “A note on Kronecker matrix products and matrix equation systems”, SIAM J. Appl. Math., 18:3 (1969), 603–606 |
19. |
H. Neudecker, “Some theorems on matrix differentiation with special reference to kronecker matrix products”, J. Amer. Statist. Assoc., 64:327 (1969), 953–963 |
20. |
A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 |
21. |
H. Shapiro, “Commutators which commute with one factor”, Pacific J. Math., 1997, Special Issue: “Olga Taussky-Todd: in memoriam”, 323–336 |
22. |
C. Song, G. Chen, L. Zhao, “Iterative solutions to coupled Sylvester-transpose matrix equations”, Appl. Math. Model., 35 (2011), 4675–4683 |
23. |
R. C. Thompson, “Multiplicative matrix commutators commuting with both factors”, J. Math. Annl. Appl., 18 (1967), 315–335 |
24. |
R. C. Thompson, “Some matrix factorization theorems. I”, Pacific. J. Math., 33:3 (1970), 763–810 |
25. |
R. C. Thompson, “Some matrix factorization theorems. II”, Pacific. J. Math., 33:3 (1970), 811–822 |
26. |
Г. Вейль, Теория групп и квантовая механика, Наука, М., 1986 |