RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2020, Volume 490, Pages 25–48 (Mi znsl6934)

$\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms
V. G. Zhuravlev

References

1. V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983
2. V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019
3. V. G. Zhuravlev, “Lokalizovannye edinitsy Pizo i sovmestnye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 458, 2017, 104–134  mathnet
4. V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Zap. nauchn. semin. POMI, 2020, 1–18 (to appear)  mathnet
5. T.W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Math. Somp., 25:113 (1971), 163–180  mathscinet  zmath
6. T.W. Cusick, “Diophantine Approximation of Ternary Linear Forms. II”, Math. Comp., 26:120 (1972), 977–993  crossref  mathscinet  zmath  scopus
7. Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Trete izd., Nauka, M., 1985  mathscinet
8. Zhuravlev V. G., “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20
9. V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195  mathnet


© Steklov Math. Inst. of RAS, 2025