RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2020, Volume 498, Pages 64–74 (Mi znsl7036)

Subexponential-time computation of isolated primary components of a polynomial ideal
A. L. Chistov

References

1. N. Burbaki, Kommutativnaya algebra, Mir, M., 1971
2. A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188  mathnet  zmath
3. A. L. Chistov, “Uluchshenie otsenki slozhnosti dlya resheniya sistem algebraicheskikh uravnenii”, Zap. nauchn. semin. POMI, 390, 2011, 299–306  mathnet
4. A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. I”, Zap. nauchn. semin. POMI, 462, 2017, 122–166  mathnet
5. A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. II”, Zap. nauchn. semin. POMI, 468, 2018, 138–176  mathnet
6. A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. III”, Zap. nauchn. semin. POMI, 481, 2018, 146–177  mathnet
7. A. L. Chistov, “Neravenstva dlya funktsii Gilberta i primarnye razlozheniya”, Algebra i analiz, 19:6 (2007), 143–172  mathnet
8. A. L. Chistov, “Dvazhdy eksponentsialnaya nizhnyaya otsenka na stepen sistemy obrazuyuschikh polinomialnogo prostogo ideala”, Algebra i analiz, 20:6 (2008), 186–213  mathnet  mathscinet
9. W. Decker, G. M. Greuel, G. Pfister, “Primary decomposition: algorithms and comparisons”, Algorithmic Algebra and Number Theory, eds. B. H. Matzat, G. M. Greuel, G. Hiss, Springer, Berlin–Heidelberg, 1999, 187–220  crossref  mathscinet  zmath
10. G. Hermann, “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”, Math. Ann., 95 (1926), 736–788  crossref  mathscinet  zmath
11. E. Lasker, “Zur Theorie der Moduln und Ideale”, Math. Ann., 60 (1905), 19–116  mathscinet
12. D. Lazard, “Résolution des systèmes d'équations algébriques”, Theoret. Comput. Sci., 15 (1981), 77–110  crossref  mathscinet  zmath
13. N. Masayuki, “New algorithms for computing primary decomposition of polynomial ideals”, Mathematical Software – ICMS 2010, Lect. Notes Comput. Sci., 6327, eds. K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama, Springer, Berlin–Heidelberg, 2010, 233–244  crossref  mathscinet  zmath
14. E. Noether, “Idealtheorie in Ringbereichen”, Math. Ann., 83:1 (1921), 24–66  crossref  mathscinet  zmath
15. V. Ortiz, “Sur une certaine décomposition canonique d'un idéal en intersection d'idéaux primaires dans un anneau noethérien commutatif”, C. R. Acad. Sci. Paris, 248 (1959), 3385–3387  mathscinet  zmath
16. A. Seidenberg, “Constructions in algebra”, Trans. Amer. Math. Soc., 197 (1974), 273–313  crossref  mathscinet  zmath
17. T. Shimoyama, K. Yokoyama, “Localization and primary decomposition of polynomial ideals”, J. Symbolic Comput., 22 (1996), 247–277  crossref  mathscinet  zmath
18. Y. Yao, “Primary decomposition: compatibility, independence and linear growth”, Proc. Amer. Math. Soc., 130:6 (2002), 1629–1637  crossref  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025