RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2004, Volume 318, Pages 277–297 (Mi znsl710)

On instability of axially symmetric equilibrium figures of rotating viscous incompressible liquid
V. A. Solonnikov

References

1. V. A. Solonnikov, “On non-stationary motion of a finite isolated mass of self-gravitating fluid”, Algebra Anal., 1 (1989), 207–249  mathnet  mathscinet  zmath
2. M. Padula, V. A. Solonnikov, “Existence of non-steady flows of an incompressible viscous drop of fluid in a frame rotating with finite angular velocity”, Elliptic and parabolic problems, World Science Publishing, River Edge, NY, 2002, 180–203  mathscinet  zmath
3. V. A. Solonnikov, “Estimate of a generalized energy in the free boundary problem for viscous incompressible fluid”, Zap. Nauchn. Semin. POMI, 282, 2001, 216–243  mathnet  mathscinet  zmath
4. V. A. Solonnikov, “On the problem of evolution of an isolated liquid mass”, Sovr. Math. Fund. Napravl., 3 (2003), 43–62  mathnet  mathscinet
5. V. A. Solonnikov, “On the stability of axially symmetric equilibrium figures of rotating viscous incompressible liquid”, Algebra Anal., 16:2 (2004), 120–153  mathnet  mathscinet  zmath
6. V. A. Solonnikov, “On the stability of non-symmetric equilibrium figures of rotating viscous incompressible liquid”, Interfaces Free Bound., 6:4 (2004)  mathscinet  zmath
7. A. M. Lyapunov, Sobranie tsochinenii, T. 3, Izdat. Akad. Nauk SSSR, M., 1959
8. P. Appell, Figures d'equilibre d'une mass liquide homogéne en rotation, Paris, 1932  zmath
9. V. A. Solonnikov, “On the justification of the quasistationary approximation in the problem of motion of a viscous capillary drop”, Interfaces Free Bound., 1 (1999), 125–173  crossref  mathscinet  zmath
10. V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Mathematical aspects of evolving interfaces, Lecture Notes in Math., 182, eds. J. F. Rodrigues, P. L. Colli, Springer, 2003, 123–175  mathscinet
11. V. A. Solonnikov, “Estimates for the resolvent of the operator appearing in the study of equilibrium figures of a rotating viscous incompressible liquid”, Problems Math. Anal., 29 (2004), 105–118  mathscinet  zmath
12. V. A. Solonnikov, “On linear stability and instability of equilibrium figures of uniformly rotating liquid”, Proc. Conf. on Elliptic and Parab. Problems, Taiwan, 2004 (to appear)  mathscinet
13. T. Nishida, Y. Teramoto, H. Yoshihara, “Global in time behavior of viscous surface waves: horizontally periodic motion”, J. Math. Kyoto Univ. (to appear)  mathscinet
14. O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds in problems of magnetohydrodynamics”, Zap. Nauchn. Semin., LOMI, 38, 1973, 46–93  mathnet  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025