|
|
|
References
|
|
|
1. |
V. A. Solonnikov, “On non-stationary motion of a finite isolated mass of self-gravitating
fluid”, Algebra Anal., 1 (1989), 207–249 |
2. |
M. Padula, V. A. Solonnikov, “Existence of non-steady flows of an incompressible viscous drop of
fluid in a frame rotating with finite angular velocity”, Elliptic and parabolic problems, World Science Publishing, River Edge, NY, 2002, 180–203 |
3. |
V. A. Solonnikov, “Estimate of a generalized energy in the free boundary problem for
viscous incompressible fluid”, Zap. Nauchn. Semin. POMI, 282, 2001, 216–243 |
4. |
V. A. Solonnikov, “On the problem of evolution of an isolated liquid mass”, Sovr. Math. Fund. Napravl., 3 (2003), 43–62 |
5. |
V. A. Solonnikov, “On the stability of axially symmetric equilibrium figures of rotating
viscous incompressible liquid”, Algebra Anal., 16:2 (2004), 120–153 |
6. |
V. A. Solonnikov, “On the stability of non-symmetric equilibrium figures of rotating
viscous incompressible liquid”, Interfaces Free Bound., 6:4 (2004) |
7. |
A. M. Lyapunov, Sobranie tsochinenii, T. 3, Izdat. Akad. Nauk SSSR, M., 1959 |
8. |
P. Appell, Figures d'equilibre d'une mass liquide homogéne en rotation, Paris, 1932 |
9. |
V. A. Solonnikov, “On the justification of the quasistationary approximation in the
problem of motion of a viscous capillary drop”, Interfaces Free Bound., 1 (1999), 125–173 |
10. |
V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Mathematical aspects of evolving interfaces, Lecture Notes in Math., 182, eds. J. F. Rodrigues, P. L. Colli, Springer, 2003, 123–175 |
11. |
V. A. Solonnikov, “Estimates for the resolvent of the operator appearing in the study of
equilibrium figures of a rotating viscous incompressible liquid”, Problems Math. Anal., 29 (2004), 105–118 |
12. |
V. A. Solonnikov, “On linear stability and instability of equilibrium figures of uniformly
rotating liquid”, Proc. Conf. on Elliptic and Parab. Problems, Taiwan, 2004 (to appear) |
13. |
T. Nishida, Y. Teramoto, H. Yoshihara, “Global in time behavior of viscous surface waves: horizontally periodic
motion”, J. Math. Kyoto Univ. (to appear) |
14. |
O. A. Ladyzhenskaya, V. A. Solonnikov, “The linearization principle and invariant manifolds in problems of
magnetohydrodynamics”, Zap. Nauchn. Semin., LOMI, 38, 1973, 46–93 |