RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ

Зап. научн. сем. ПОМИ, 2021, том 507, страницы 99–113 (Mi znsl7162)

Statistics of irreducible components in large tensor powers of the spinor representation for $\mathfrak{so}_{2n+1}$ as $n\to\infty$
A.A. Nazarov, P. P. Nikitin, O. V. Postnova

Литература

1. P. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Int. Math. Res. Not., 2001:4 (2001), 179–192  crossref  zmath
2. P. Biane, “Representations of symmetric groups and free probability”, Adv. Math., 138:1 (1998), 126–181  crossref  mathscinet  zmath
3. A. Borodin, V. Gorin, A. Guionnet, “Gaussian asymptotics of discrete $\beta$-ensembles”, Publ. Math. Inst. Hautes Études Sci., 125, no. 1, 2017, 1–78  crossref  zmath
4. J. Breuer, M. Duits, “Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients”, J. Amer. Math. Soc., 30:1 (2017), 27–66  crossref  mathscinet  zmath  elib
5. P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Amer. Math. Soc., 1999
6. D. V. Giang, Finite Hilbert transforms logarithmic potentials and singular integral equations, arXiv: 1003.3070
7. A. Guionnet, Asymptotics of Random Matrices and Related Models: The Uses of Dyson–Schwinger Equations, Amer. Math. Soc., 2019  zmath
8. J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Amer. Math. Soc., 2002  zmath
9. M. Kashiwara, T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras”, J. Algebra, 165:2 (1994), 295–345  crossref  mathscinet  zmath
10. S. V. Kerov, “On asymptotic distribution of symmetry types of high rank tensors”, Zap. Nauchn. Semin. POMI, 155, 1986, 181–186  mathnet  zmath
11. P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor powers for non-simply laced Lie algebras $B_2$-case”, J. Phys. Conf. Ser., 346:1 (2012), 012012  crossref  elib
12. P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, Theor. Math. Phys., 171:2 (2012), 666–674  mathnet  crossref  zmath  elib
13. P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity functions for tensor powers. $A_n$-case”, J. Phys. Conf. Ser., 343:1 (2012), 012070  crossref
14. P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor power decomposition. $B_n$ case”, J. Phys. Conf. Ser., 343:1 (2012), 012095  crossref
15. T. Nakashima, “Crystal base and a generalization of the Littlewood–Richardson rule for the classical Lie algebras”, Comm. Math. Phys., 154:2 (1993), 215–243  crossref  mathscinet  zmath  adsnasa
16. A. Nazarov, P. Nikitin, O. Postnova, Limit shape for infinite rank limit of non simply-laced Lie algebras of series $\mathfrak{so}_{2n+1}$, arXiv: 2010.16383
17. A. A. Nazarov, O. V. Postnova, “The limit shape of a probability measure on a tensor product of modules of the $B_n$ algebra”, J. Math. Sci., 240:5 (2019), 556–566  mathnet  crossref  zmath
18. O. Postnova, N. Reshetikhin, “On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras”, Lett. Math. Phys., 110 (2020), 147–178  crossref  mathscinet  zmath  adsnasa
19. D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge Univ. Press, 2015  zmath
20. T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447  crossref  mathscinet  zmath


© МИАН, 2025