|
|
|
Литература
|
|
|
1. |
P. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Int. Math. Res. Not., 2001:4 (2001), 179–192 |
2. |
P. Biane, “Representations of symmetric groups and free probability”, Adv. Math., 138:1 (1998), 126–181 |
3. |
A. Borodin, V. Gorin, A. Guionnet, “Gaussian asymptotics of discrete $\beta$-ensembles”, Publ. Math. Inst. Hautes Études Sci., 125, no. 1, 2017, 1–78 |
4. |
J. Breuer, M. Duits, “Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients”, J. Amer. Math. Soc., 30:1 (2017), 27–66 |
5. |
P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach, Amer. Math. Soc., 1999 |
6. |
D. V. Giang, Finite Hilbert transforms logarithmic potentials and singular integral equations, arXiv: 1003.3070 |
7. |
A. Guionnet, Asymptotics of Random Matrices and Related Models: The Uses of Dyson–Schwinger Equations, Amer. Math. Soc., 2019 |
8. |
J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Amer. Math. Soc., 2002 |
9. |
M. Kashiwara, T. Nakashima, “Crystal graphs for representations of the q-analogue of classical Lie algebras”, J. Algebra, 165:2 (1994), 295–345 |
10. |
S. V. Kerov, “On asymptotic distribution of symmetry types of high rank tensors”, Zap. Nauchn. Semin. POMI, 155, 1986, 181–186 |
11. |
P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor powers for non-simply laced Lie algebras $B_2$-case”, J. Phys. Conf. Ser., 346:1 (2012), 012012 |
12. |
P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, Theor. Math. Phys., 171:2 (2012), 666–674 |
13. |
P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity functions for tensor powers. $A_n$-case”, J. Phys. Conf. Ser., 343:1 (2012), 012070 |
14. |
P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Tensor power decomposition. $B_n$ case”, J. Phys. Conf. Ser., 343:1 (2012), 012095 |
15. |
T. Nakashima, “Crystal base and a generalization of the Littlewood–Richardson rule for the classical Lie algebras”, Comm. Math. Phys., 154:2 (1993), 215–243 |
16. |
A. Nazarov, P. Nikitin, O. Postnova, Limit shape for infinite rank limit of non simply-laced Lie algebras of series $\mathfrak{so}_{2n+1}$, arXiv: 2010.16383 |
17. |
A. A. Nazarov, O. V. Postnova, “The limit shape of a probability measure on a tensor product of modules of the $B_n$ algebra”, J. Math. Sci., 240:5 (2019), 556–566 |
18. |
O. Postnova, N. Reshetikhin, “On multiplicities of irreducibles in large tensor product of representations of simple Lie algebras”, Lett. Math. Phys., 110 (2020), 147–178 |
19. |
D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge Univ. Press, 2015 |
20. |
T. Tate, S. Zelditch, “Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers”, J. Funct. Anal., 217:2 (2004), 402–447 |