RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2021, Volume 508, Pages 73–88 (Mi znsl7170)

Small weights in Caccioppoli's inequality and applications to Liouville-type theorems for non-standard problems
M. Bildhauer, M. Fuchs

References

1. A. Farina, “Liouville-type theorems for elliptic problems”, Handbook of differential equations: stationary partial differential equations, v. IV, Elsevier/North-Holland, Amsterdam, 2007, 61–116  crossref  zmath
2. G. Seregin, “Remarks on Liouville type theorems for steady-state Navier-Stokes equations”, Algebra i Analiz, 30:2 (2018), 238–248  mathnet
3. L. D'Ambrosio, “Liouville theorems for anisotropic quasilinear inequalities”, Nonlinear Anal., 70:8 (2009), 2855–2869  crossref  mathscinet
4. T. Adamowicz, P. Górka, “The Liouville theorems for elliptic equations with nonstandard growth”, Commun. Pure Appl. Anal., 14:6 (2015), 2377–2392  crossref  mathscinet  zmath  elib
5. S. Dudek, “The Liouville-type theorem for problems with nonstandard growth derived by Caccioppoli-type estimate”, Monatsh. Math., 192:1 (2020), 75–91  crossref  mathscinet  zmath
6. M. Bildhauer, M. Fuchs, “Liouville-type results in two dimensions for stationary points of functionals with linear growth”, Ann. Fenn. Math., 2021
7. M. Bildhauer, M. Fuchs, “Splitting type variational problems with linear growth conditions”, J. Math. Sci. (N.Y.), 250:2 (2020), 45–58  crossref  zmath; Problems in mathematical analysis, 105  zmath
8. M. Bildhauer, M. Fuchs, “Splitting-type variational problems with mixed linear-superlinear growth conditions”, J. Math. Anal. Appl., 501:1 (2021), 124452, 29 pp.  crossref  zmath
9. M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin, 1990  zmath
10. M. Bildhauer, M. Fuchs, “Partial regularity for variational integrals with (s,$\mu$,q)-growth”, Calc. Var. Partial Diff. Equ., 13:4 (2001), 537–560  crossref  zmath
11. M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions, Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003  crossref  zmath


© Steklov Math. Inst. of RAS, 2025