|
|
|
References
|
|
|
1. |
A. Farina, “Liouville-type theorems for elliptic problems”, Handbook of differential equations: stationary partial differential equations, v. IV, Elsevier/North-Holland, Amsterdam, 2007, 61–116 |
2. |
G. Seregin, “Remarks on Liouville type theorems for steady-state Navier-Stokes equations”, Algebra i Analiz, 30:2 (2018), 238–248 |
3. |
L. D'Ambrosio, “Liouville theorems for anisotropic quasilinear inequalities”, Nonlinear Anal., 70:8 (2009), 2855–2869 |
4. |
T. Adamowicz, P. Górka, “The Liouville theorems for elliptic equations with nonstandard growth”, Commun. Pure Appl. Anal., 14:6 (2015), 2377–2392 |
5. |
S. Dudek, “The Liouville-type theorem for problems with nonstandard growth derived by Caccioppoli-type estimate”, Monatsh. Math., 192:1 (2020), 75–91 |
6. |
M. Bildhauer, M. Fuchs, “Liouville-type results in two dimensions for stationary points of functionals with linear growth”, Ann. Fenn. Math., 2021 |
7. |
M. Bildhauer, M. Fuchs, “Splitting type variational problems with linear growth conditions”, J. Math. Sci. (N.Y.), 250:2 (2020), 45–58 ; Problems in mathematical analysis, 105 |
8. |
M. Bildhauer, M. Fuchs, “Splitting-type variational problems with mixed linear-superlinear growth conditions”, J. Math. Anal. Appl., 501:1 (2021), 124452, 29 pp. |
9. |
M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer, Berlin, 1990 |
10. |
M. Bildhauer, M. Fuchs, “Partial regularity for variational integrals with (s,$\mu$,q)-growth”, Calc. Var. Partial Diff. Equ., 13:4 (2001), 537–560 |
11. |
M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions, Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003 |