|
|
|
References
|
|
|
1. |
R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 |
2. |
R. A. Gustafson, “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341 (1994), 69–119 |
3. |
R. A. Gustafson, “Some $q$-beta integrals on $SU(n)$ and $Sp(n)$ that generalize the Askey–Wilson and Nasrallah–Rahman integrals”, SIAM J. Math. Anal., 25 (1994), 441–449 |
4. |
J. V. Stokman, “On BC type basic hypergeometric orthogonal polynomials”, Trans. Amer. Math. Soc., 352 (2000), 1527–1579 |
5. |
V. P. Spiridonov, G. S. Vartanov, “Elliptic hypergeometry of supersymmetric dualities”, Comm. Math. Phys., 304 (2011), 797–874 |
6. |
V. P. Spiridonov, “Theta hypergeometric integrals”, St. Petersburg Math. J., 15 (2003), 929–967 |
7. |
V. P. Spiridonov, S. O. Warnaar, “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132 |
8. |
V. P. Spiridonov, “Short proofs of the elliptic beta integrals”, Ramanujan J., 13 (2007), 265–283 |
9. |
S. E. Derkachov, A. N. Manashov, “Spin Chains and Gustafson's Integrals”, J. Phys. A, Math. Theor., 50 (2017), 294006 |
10. |
S. E. Derkachov, A. N. Manashov, P. A. Valinevich, “Gustafson integrals for $SL(2, \mathbb{C})$ spin magnet”, J. Phys. A, Math. Theor., 50 (2017), 294007 |
11. |
S. E. Derkachov, A. N. Manashov, P. A. Valinevich, “$SL(2, \mathbb{C})$ Gustafson Integrals”, SIGMA, 14 (2018), 030 |
12. |
S. E. Derkachov, A. N. Manashov, “On Complex Gamma-Function Integrals”, SIGMA, 16 (2020), 003 |
13. |
I. M. Gel'fand, M. I. Graev, N. Ya. Vilenkin, Generalized functions, v. 5, Integral geometry and representation theory, Academic Press, New York–London, 1966, 499 pp. |
14. |
M. Kirch, A. N. Manashov, “Noncompact $SL(2,\mathbb{R})$ spin chain”, JHEP, 0406 (2004), 035 |
15. |
A. V. Ivanov, “On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL(2,\mathbb{R})$”, J. Math. Sci. (N. Y.), 242:5 (2019), 692–700 |
16. |
S. C. Milne, “A $q$-analog of the Gauss summation theorem for hypergeometric series in $U(n)$”, Adv. Math., 72 (1988), 59–131 |