|
|
|
Литература
|
|
|
1. |
L. Erdős, A. Knowles, H.-T. Yau, J. Yin, “Spectral statistics of Erdős–Rényi graphs I: Local semicircle law”, Ann. Probab., 41:3B (2013), 2279–2375 |
2. |
L. Erdős, A. Knowles, H.-T. Yau, J. Yin, “Spectral statistics of {E}rdős-{R}ényi graphs II: Eigenvalue spacing and the extreme eigenvalues”, Comm. Math. Phys., 314:3 (2012), 587–640 |
3. |
J. Huang, B. Landon, H.-T. Yau, “Bulk universality of sparse random matrices”, J. Math. Phys., 56 (2015), 123301, 1–19 |
4. |
J. Huang, H.-T. Yau, Edge Universality of Sparse Random Matrices, 2022, arXiv: 2206.06580 [math.PR] |
5. |
J. O. Lee, K. Schnelli, “Tracy–Widom distribution for the largest eigenvalue of real sample covariance matrices with general population”, Ann. Appl. Probab., 26:6 (2016), 3786–3839 |
6. |
J. Y. Hwang, J. O. Lee, K. Schnelli, “Local law and Tracy–Widom limit for sparse sample covariance matrices”, Ann. Appl. Probab., 29:5 (2019), 3006–3036 |
7. |
A. N. Tikhomirov, D. A. Timushev, “Local laws for sparse sample covariance matrices”, Mathematics, 10:13 (2022), 2326 |
8. |
A. Aggarwal, “Bulk universality for generalized Wigner matrices with few moments”, Probab. Theory Relat, Fields, 173:1–2 (2019), 375–432 |
9. |
A. N. Tikhomirov, “Simple proofs of Rosenthal inequalities for linear forms of independent random variables and its generalization to quadratic forms”, Proc. of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 2:34 (2018), 8–13 |