RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2023, Volume 520, Pages 5–16 (Mi znsl7311)

The spectrum of states of Bañados–Teitelboim–Zanelli black hole formed by a collapsing dust shell
A. A. Andrianov, D. A. Lyozin, A. N. Starodubtsev

References

1. G. 't Hooft, “Quantum Clones inside Black Holes”, Universe, 8:10 (2022), 537  crossref  mathscinet
2. V. A. Berezin, A. Boyarsky, A. Yu. Neronov, “Quantum geometrodynamics for black holes and wormholes”, Phys. Rev. D, 57 (1997), 1118–1128  crossref  mathscinet
3. A. A. Andrianov, A. Starodubtsev, Ya. Elmahalawy, “$(2+1)$-dimensional gravity coupled to a dust shell: quantization in terms of global phase space variables”, Theor. Math. Phys., 200:3 (2019), 1269–1281  mathnet  crossref  mathscinet  zmath
4. M. Bañados, C. Teitelboim, J. Zanelli, “The black hole in three-dimensional space-time”, Phys. Rev. Lett., 69:13 (1992), 1849–1851  crossref  mathscinet
5. A. A. Andrianov, A. Starodubtsev, Ya. Elmahalawy, “Quantum analysis of BTZ black hole formation due to the collapse of a dust shell”, Universe, 6:11 (2020), 201  crossref
6. A. Yu. Alekseev, A. Z. Malkin, “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Commun. Math. Phys., 169 (1995), 99–120  crossref  mathscinet
7. A. Ballesteros, F. J. Herranz, C. Meusburger, “Drinfel'd doubles for (2+1)-gravity”, Class. Quant. Grav., 30 (1550), 155012  crossref  mathscinet
8. N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Algebra Analiz, 1:1 (1989), 178–206  mathnet  mathscinet
9. V. G. Drinfeld, “Quantum groups”, Zap. Nauchn. Semin. LOMI, 155, 1986, 18–49  mathnet  mathscinet  zmath
10. M. P. Bronstein, “Quantum theory of weak gravitational fields”, Phys. Zeitschr. der Sowjetunion, 9 (1936), 140–157  zmath
11. E. Witten, “$2 + 1$ dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311:1 (1988), 46–78  crossref  mathscinet  zmath
12. G. 't Hooft, “Canonical quantization of gravitating point particles in $2+1$ dimensions”, Class. Quantum Grav., 10 (1993), 1653  crossref  mathscinet  zmath
13. H. J. Matschull, M. Welling, “Quantum mechanics of a point particle in $2+1$ dimensional gravity”, Class. Quant. Grav., 15 (1998), 2981  crossref  mathscinet  zmath
14. C. Meusburger, B. J. Schroers, “Phase space structure of Chern-Simons theory with a non-standard puncture”, Nucl. Phys. B, 738 (2006), 425–456  crossref  mathscinet  zmath
15. I. M. Gel'fand, M. A. Naimark, “Unitary representations of the classical groups”, Trudy Mat. Inst. Steklov AN USSR, 36, 1950, 3–288  mathscinet


© Steklov Math. Inst. of RAS, 2025