|
|
|
References
|
|
|
1. |
E. W. Barnes, “The theory of the double gamma function”, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 196 (1901), 265–387 |
2. |
N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin, Baxter operators in Ruijsenaars hyperbolic system I. Commutativity of $Q$-operators, arXiv: 2303.06383 |
3. |
N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin, Baxter operators in Ruijsenaars hyperbolic system II. Bispectral wave functions, arXiv: 2303.06382 |
4. |
L. D. Faddeev, “Discrete Heisenberg–Weyl Group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 |
5. |
L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality”, Commun. Math. Phys., 219 (2001), 199–219 |
6. |
L. D. Faddeev, O. A. Yakubovsky, Lectures in Quantum Mechanics for Mathematician Students, Student Mathematical Library, 47, AMS, 2009 |
7. |
I. M. Gelfand, G. E. Shilov, Generalized Functions: Properties and operations, Academic Press, 1964 |
8. |
M. Hallnäs, S. Ruijsenaars, “Joint eigenfunctions for the relativistic Calogero–Moser Hamiltonians of hyperbolic type: I. First steps”, Int. Math. Res. Notices, 2014, 4400–4456 |
9. |
M. Hallnäs, S. Ruijsenaars, “A recursive construction of joint eigenfunctions for the hyperbolic nonrelativistic Calogero-Moser Hamiltonians”, Int. Math. Res. Notices, 2015, 10278–10313 |
10. |
M. Hallnäs, S. Ruijsenaars, “Product formulas for the relativistic and nonrelativistic conical functions”, Adv. Stud. Pure Math., 76 (2018), 195–246 |
11. |
S. Kharchev, S. Khoroshkin, Wave function for $GL(n,\mathbb{R})$ hyperbolic Sutherland model, arXiv: 2108.04895 |
12. |
N. Kurokawa, S-Y. Koyama, “Multiple sine functions”, Forum Math., 15 (2003), 839–876 |
13. |
M. L. Nazarov, E. K. Sklyanin, “Sekiguchi–Debiard operators at infinity”, Commun. Math. Phys., 324 (2013), 831–849 |
14. |
M. L. Nazarov, E. K. Sklyanin, “Macdonald operators at infinity”, J. Algebraic Combin., 40 (2013), 23–44 |
15. |
B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $ U_q (sl(2, \mathbb{R}))$”, Commun. Mathe. Phys., 224 (2001), 613–655 |
16. |
S. N. M. Ruijsenaars, “First-order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 |
17. |
S. N. M. Ruijsenaars, “Zero-eigenvalue eigenfunctions for differences of elliptic relativistic Calogero–Moser Hamiltonians”, Theor. Math. Phys., 146:1 (2006), 25–33 |