RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2023, Volume 520, Pages 124–138 (Mi znsl7314)

Scalar product of the five-vertex model and complete symmetric polynomials
N. M. Bogolyubov, C. L. Malyshev

References

1. V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418  crossref  mathscinet  zmath
2. A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879  mathscinet  zmath
3. N. Bogoliubov, A. Pronko, M. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A: Math. Gen., 35 (2002), 5525–5541  crossref  mathscinet  zmath
4. N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523–535  mathnet  crossref  mathscinet  zmath
5. N. M. Bogolyubov, “Five-vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21 (2010), 407–421  mathnet  crossref  mathscinet  zmath
6. A. V. Kitaev, A. G. Pronko, “Emptiness formation probability of the six-vertex model and the sixth Painlevé equation”, Comm. Math. Phys., 345 (2016), 305–354  crossref  mathscinet  zmath
7. N. M. Bogoliubov, “Four-Vertex Model in the Linearly Growing External Field under the Fixed and Periodic Boundary Conditions”, Physics of Particles and Nuclei, 51 (2020), 429–433  crossref
8. N. M. Bogolyubov, A. G. Pronko, “One-point function of the four-vertex model”, Zap. Nauchn. Semin. POMI, 509 (2021), 39–53  mathnet  mathscinet
9. R. Stanley, Enumerative combinatorics, v. 1, Cambridge University Press, Cambridge, 1996  mathscinet; ò. 2, 1999
10. G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150  crossref  mathscinet  zmath
11. D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999  mathscinet  zmath
12. N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856  mathnet  crossref  mathscinet  zmath
13. I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, 1995  mathscinet  zmath
14. F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700  crossref  mathscinet  zmath
15. N. Reshetikhin, A. Sridhar, “Integrability of limit shapes of the six vertex model”, Comm. Math. Phys., 56 (2017), 535–565  crossref  mathscinet
16. I. Lyberg, V. Korepin, G. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301  crossref  mathscinet  zmath
17. F. Colomo, A. G. Pronko, A. Sportiello, “Arctic curve of the free-fermion six-vertex model in an L-shaped domain”, J. Stat. Phys., 174 (2019), 1–27  crossref  mathscinet  zmath
18. R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic press, San Diego, 1982  mathscinet  zmath
19. J. Noh, D. Kim, “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1994), 1943–1961  crossref
20. J. de Gier, R. Kenyon, S. S. Watson, “Limit shapes for the asymmetric five vertex model”, Commun. Math. Phys., 385 (2021), 793–836  crossref  mathscinet  zmath
21. L. D. Faddeev, “Quantum Inverse Scattering Method”, Sov. Sci. Rev. Math., C1 (1980), 107–160
22. V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993  mathscinet  zmath
23. K. Motegi, K. Sakai, “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A: Math. Theor., 46 (2013), 355201  crossref  mathscinet  zmath
24. I. N. Burenev, A. G. Pronko, “Determinant formulas for the five-vertex model”, J. Phys. A: Math. Theor., 54 (2021), 055008  crossref  mathscinet  zmath
25. N. M. Bogoliubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 05200  mathnet  mathscinet
26. N. M. Bogoliubov, C. Malyshev, “Zero range process and multi-dimensional random walks”, SIGMA, 13 (2017), 056  mathnet  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025