|
|
|
References
|
|
|
1. |
V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 |
2. |
A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 |
3. |
N. Bogoliubov, A. Pronko, M. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A: Math. Gen., 35 (2002), 5525–5541 |
4. |
N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523–535 |
5. |
N. M. Bogolyubov, “Five-vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21 (2010), 407–421 |
6. |
A. V. Kitaev, A. G. Pronko, “Emptiness formation probability of the six-vertex model and the sixth Painlevé equation”, Comm. Math. Phys., 345 (2016), 305–354 |
7. |
N. M. Bogoliubov, “Four-Vertex Model in the Linearly Growing External Field under the Fixed and Periodic Boundary Conditions”, Physics of Particles and Nuclei, 51 (2020), 429–433 |
8. |
N. M. Bogolyubov, A. G. Pronko, “One-point function of the four-vertex model”, Zap. Nauchn. Semin. POMI, 509 (2021), 39–53 |
9. |
R. Stanley, Enumerative combinatorics, v. 1, Cambridge University Press, Cambridge, 1996 ; ò. 2, 1999 |
10. |
G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150 |
11. |
D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 |
12. |
N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 |
13. |
I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, 1995 |
14. |
F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 |
15. |
N. Reshetikhin, A. Sridhar, “Integrability of limit shapes of the six vertex model”, Comm. Math. Phys., 56 (2017), 535–565 |
16. |
I. Lyberg, V. Korepin, G. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301 |
17. |
F. Colomo, A. G. Pronko, A. Sportiello, “Arctic curve of the free-fermion six-vertex model in an L-shaped domain”, J. Stat. Phys., 174 (2019), 1–27 |
18. |
R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic press, San Diego, 1982 |
19. |
J. Noh, D. Kim, “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1994), 1943–1961 |
20. |
J. de Gier, R. Kenyon, S. S. Watson, “Limit shapes for the asymmetric five vertex model”, Commun. Math. Phys., 385 (2021), 793–836 |
21. |
L. D. Faddeev, “Quantum Inverse Scattering Method”, Sov. Sci. Rev. Math., C1 (1980), 107–160 |
22. |
V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 |
23. |
K. Motegi, K. Sakai, “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A: Math. Theor., 46 (2013), 355201 |
24. |
I. N. Burenev, A. G. Pronko, “Determinant formulas for the five-vertex model”, J. Phys. A: Math. Theor., 54 (2021), 055008 |
25. |
N. M. Bogoliubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 05200 |
26. |
N. M. Bogoliubov, C. Malyshev, “Zero range process and multi-dimensional random walks”, SIGMA, 13 (2017), 056 |