RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2023, Volume 520, Pages 139–150 (Mi znsl7315)

Examples of zero modes of the Faddeev–Popov operator for the $SU(2)$ gauge field
T. A. Bolokhov

References

1. V. N. Popov, L. D. Faddeev, Teoriya vozmuschenii dlya kalibrovochno-invariantnykh polei, Preprint ITF-67-036, Kiev, 1967
2. J. Schwinger, “Non-Abelian gauge fields. Relativistic invariance”, Phys. Rev., 127 (1962), 324–330  crossref  mathscinet  zmath
3. N. H. Christ, T. D. Lee, “Operator ordering and Feynman rules in Gauge theories”, Phys. Rev. D, 22 (1980), 970–972  crossref  mathscinet
4. V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1–19  crossref  mathscinet
5. F. Henyey, “Gribov ambiguity without topological charge”, Phys. Rev. D, 20 (1979), 1460  crossref
6. A. Ilderton, M. Lavelle, D. McMullan, “Colour, copies and confinement”, JHEP, 0703 (2007), 044, arXiv: hep-th/0701168  crossref  mathscinet
7. R. R. Landim, L. C. Q. Vilar, O. S. Ventura, V. E. R. Lemes, “On the zero modes of the Faddeev-Popov operator in the Landau gauge”, J. Math. Phys., 55 (2014), 022901  crossref  mathscinet  zmath
8. R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982  mathscinet
9. F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990
10. E. Hille, Ordinary differential equations in the complex domain, Dover Books on Mathematics, 1976, 374–401  mathscinet
11. A. B. Olde Daalhuis, Hypergeometric function, NIST Handbook of Mathematical Functions, eds. F. W. J. Olver, D. M. Lozier, R. F. Boisvert, C. W. Clark, Cambridge University Press  mathscinet


© Steklov Math. Inst. of RAS, 2025