|
|
|
References
|
|
|
1. |
V. N. Popov, L. D. Faddeev, Teoriya vozmuschenii dlya kalibrovochno-invariantnykh polei, Preprint ITF-67-036, Kiev, 1967 |
2. |
J. Schwinger, “Non-Abelian gauge fields. Relativistic invariance”, Phys. Rev., 127 (1962), 324–330 |
3. |
N. H. Christ, T. D. Lee, “Operator ordering and Feynman rules in Gauge theories”, Phys. Rev. D, 22 (1980), 970–972 |
4. |
V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1–19 |
5. |
F. Henyey, “Gribov ambiguity without topological charge”, Phys. Rev. D, 20 (1979), 1460 |
6. |
A. Ilderton, M. Lavelle, D. McMullan, “Colour, copies and confinement”, JHEP, 0703 (2007), 044, arXiv: hep-th/0701168 |
7. |
R. R. Landim, L. C. Q. Vilar, O. S. Ventura, V. E. R. Lemes, “On the zero modes of the Faddeev-Popov operator in the Landau gauge”, J. Math. Phys., 55 (2014), 022901 |
8. |
R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 |
9. |
F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 |
10. |
E. Hille, Ordinary differential equations in the complex domain, Dover Books on Mathematics, 1976, 374–401 |
11. |
A. B. Olde Daalhuis, Hypergeometric function, NIST Handbook of Mathematical Functions, eds. F. W. J. Olver, D. M. Lozier, R. F. Boisvert, C. W. Clark, Cambridge University Press |