RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2023, Volume 520, Pages 151–161 (Mi znsl7316)

Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions
E. Sh. Gutshabash

References

1. M. Born, L. Infeld, “Fondation of the New Field Theory”, Proc. R. Soc. Lond. A, 144 (1934), 425  crossref  zmath
2. E. S.Fradkin, A. A.Tseitlin, “Non-Linear Electrodynamics from Quantized Strings”, Phys. Lett. B, 163 (1985), 123  crossref  mathscinet  zmath
3. R. Ferraro, F. Fiorini, “Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime”, Phys. Lett B, 692 (2010), 206  crossref  mathscinet
4. J. C. Brunelli, M. Gurses, K. Zheltukhin, “On the integrability of a Class of Monge-Ampere Equations”, Rev. Math. Phys., 13 (2001), 529  crossref  mathscinet  zmath
5. M. Arik, F. Neyzi, Y. Nutku, P. Olver. J. M. Verosky, “Multi-Hamiltonian Structure of the Born-Infeld Equation”, IMA Series, 497 (1989)  mathscinet
6. E. Sh. Gutshabash, P. P. Kulish, “Preobrazovanie Beklunda i novye tochnye resheniya modeli Borna–Infelda”, Zap. nauchn. semin. POMI, 465, 2017, 135–146  mathnet
7. B. M. Barbashov, N. A. Chernikov, “Reshenie i kvantovanie nelineinoi dvumernoi modeli tipa polya Borna-Infelda”, ZhETF, 50 (1966), 1296–1308
8. A. D. Polyanin, V. F. Zaitsev, A. I. Zhurov, Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005
9. E. Sh. Gutshabash, “Nelineinaya sigma-model, metod Zakharova–Shabata i novye tochnye formy minimalnoi poverkhnosti v ${\mathbb R^3}$”, Pisma v ZhETF, 99 (2014), 827  mathnet
10. N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970
11. Dzh. Uizem, Lineinye i nelineinye volny, Nauka, M., 1974
12. B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978  mathscinet
13. O. F. Menshikh, “Vzaimodeistvie finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79 (1989), 16  mathnet  mathscinet
14. S. V. Khabirov, “Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoschyu kontaktnoi gruppy neodnorodnogo uravneniya Monzha–Ampera”, Mat.sb., 181 (1990), 1607–1622  mathnet  zmath
15. A. Figalli, The Monge–Ampere Equation and Its Applications, European mathematical Society, 2017  mathscinet  zmath
16. O. I. Mokhov, Simplekticheskaya i Puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, Institut kompyuternykh issledovanii, M.-Izhevsk, 2004  mathscinet
17. N. Manganaro, A. Rizzo, P. Vergallo, Solutions to the wave equation for commuting flows of dispersionless PDEs, arXiv: 2212.10130
18. W. I. Fushchich, V. M. Shtelen, N. I. Serov, Symmetry Analysis and Exact Solutions of the Equations of Mathematical Physics, Kluwer, Dordrecht, 1993  mathscinet
19. M. Nadjafikhah, S. R. Hejazi, Group Analysis of Born-Infeld Equation, arXiv: 1009.5490


© Steklov Math. Inst. of RAS, 2025