RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2023, Volume 520, Pages 162–188 (Mi znsl7317)

Three-loop divergences in effective action of $4$-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
A. V. Ivanov, N. V. Kharuk

References

1. C. N. Yang, R. Mills, “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96 (1954), 191–195  crossref  mathscinet  zmath
2. A. Trautman, “The geometry of gauge fields”, Czechoslovak J. Phys., 29:1 (1979), 107–116  crossref  mathscinet
3. O. Babelon, C. M. Viallet, “The Riemannian geometry of the configuration space of gauge theories”, Comm. Math. Phys., 81:4 (1981), 515–525  crossref  mathscinet  zmath
4. L. D. Faddeev, V. Popov, “Feynman diagrams for Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30  crossref
5. L. D. Faddeev, A. A. Slavnov, Gauge Fields$:$ An Introduction to Quantum Theory, Frontiers in Physics, 83, Addison-Wesley, 1991  mathscinet
6. L. D. Faddeev, “Mass in quantum Yang-Mills theory $($comment on a Clay millenium problem$)$”, Bull. Braz. Math. Soc. (N. S.), 33:2 (2002), 201–212  crossref  mathscinet  zmath
7. L. D. Faddeev, “Scenario for the renormalization in the 4D Yang–Mills theory”, Int. J. Mod. Phys. A, 31 (2016), 1630001  crossref  mathscinet  zmath
8. S. E. Derkachev, A. V. Ivanov, L. D. Faddeev, “Stsenarii dlya perenormirovki v kvantovoi teorii Yanga-Millsa v chetyrekhmernom prostranstve-vremeni”, TMF, 192:2 (2017), 227–234  mathnet  crossref  mathscinet  zmath
9. B. S. DeWitt, “Quantum theory of gravity. 2. The manifestly covariant theory”, Phys. Rev., 162 (1967), 1195–1239  crossref  zmath
10. B. S. DeWitt, “Quantum theory of gravity. 3. Applications of the covariant theory”, Phys. Rev., 162 (1967), 1239–1256  crossref  zmath
11. G. 't Hooft, “The background field method in gauge field theories”, Karpacz 1975 Proceedings, v. 1, Acta Universitatis Wratislaviensis, 368, Wroclaw, 1976, 345–369
12. C. H. Oh, “Two-loop approximation of the effective potential for the Yang–Mills field”, Prog. Theor. Phys., 55:4 (1976), 1251–1258  crossref
13. L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13:1–2 (1982), 33–50  mathscinet
14. I. Ya. Arefeva, A. A. Slavnov, L. D. Faddeev, “Proizvodyaschii funktsional dlya S-matritsy v kalibrovochno-invariantnykh teoriyakh”, TMF, 21:3 (1974), 311–321  mathnet
15. A. V. Ivanov, N. V. Kharuk, “Quantum equation of motion and two-loop cutoff renormalization for $\phi^3$ model”, Zap. nauchn. semin. POMI, 487, 2019, 151–166  mathnet  mathscinet
16. A. V. Ivanov, N. V. Kharuk, “Two-loop cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48 (2020), 015002  crossref
17. A. V. Ivanov, N. V. Kharuk, “Formula for two-loop divergent part of 4-D Yang–Mills effective action”, Eur. Phys. J. C, 82 (2022), 997  crossref
18. A. V. Ivanov, “Explicit Cutoff Regularization in Coordinate Representation”, J. Phys. A: Math. Theor., 55 (2022), 495401  crossref  mathscinet  zmath
19. J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, 1984  mathscinet  zmath
20. O. I. Zavialov, Renormalized Quantum Field Theory, Kluwer Academic Publishers, Dodrecht–Boston, 1990  mathscinet  zmath
21. D. I. Kazakov, Radiative corrections, divergences, regularization, renormalization, renormalization group and all that in examples in quantum field theory, arXiv: 0901.2208
22. M. Oleszczuk, “A symmetry-preserving cut-off regularization”, Z. Phys. C, 64 (1994), 533–538  crossref
23. Sen-Ben Liao, “Operator cutoff regularization and renormalization group in Yang-Mills theory”, Phys. Rev. D, 56 (1997), 5008–5033  crossref
24. G. Cynolter, E. Lendvai, Cutoff regularization method in gauge theories, arXiv: 1509.07407
25. N. V. Kharuk, “Regulyarizatsii smeshannogo tipa i nelogarifmicheskie singulyarnosti”, Zap. nauchn. semin. POMI, 494, 2020, 242–249  mathnet  mathscinet
26. G. 't Hooft, “Renormalization of massless Yang–Mills fields”, Nucl. Phys. B, 33 (1971), 173–199  crossref
27. C. G. Bollini, J. J. Giambiagi, “Dimensional renormalization: the number of dimensions as a regularizing parameter”, Nuovo Cim. B, 12 (1972), 20–26  crossref
28. I. Jack, H. Osborn, “Two-loop background field calculations for arbitrary background fields”, Nucl. Phys. B, 207 (1982), 474–504  crossref
29. J. P. Bornsen, A. E. M. van de Ven, “Three-loop Yang–Mills $\beta$-function via the covariant background field method”, Nucl. Phys. B, 657 (2003), 257–303  crossref  mathscinet  zmath
30. A. V. Ivanov, “O razmernoi regulyarizatsii na primere teorii Yanga–Millsa”, Zap. nauchn. semin. POMI, 465, 2017, 147–156  mathnet
31. A. V. Ivanov, “About renormalized effective action for the Yang–Mills theory in four-dimensional space-time”, XXth International Seminar on High Energy Physics (QUARKS-2018), EPJ Web Conf., 191, 2018, 06001, 7 pp.  crossref
32. S. L. Shatashvili, “Dvukhpetlevoe priblizhenie v formalizme vneshnego polya”, TMF, 58:2 (1984), 219–228  mathnet
33. M. Nakahara, Geometry, topology and physics, Second Ed, CRC Press, 2003  mathscinet
34. A. V. Ivanov, N. V. Kharuk, “Ordered exponential and its features in Yang–Mills effective action”, Commun. Theor. Phys., 2023  crossref  mathscinet
35. M. Lüscher, “Dimensional regularisation in the presence of large background fields”, Ann. Physics, 142 (1982), 359–392  crossref  mathscinet
36. N.V. Kharuk, “Nulevye mody operatora Laplasa v dvukhpetlevykh vychisleniyakh v teorii Yanga–Millsa”, Zap. nauchn. semin. POMI, 509, 2021, 216–226  mathnet
37. V. Fock, “Die Eigenzeit in der Klassischen- und in der Quanten- mechanik”, Sow. Phys., 12 (1937), 404–425  zmath
38. P. B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10 (1975), 601–618  crossref  mathscinet  zmath
39. A. O. Barvinsky, G. A. Vilkovisky, “The Generalized Schwinger–Dewitt technique in gauge theories and quantum gravity”, Phys. Rept., 119 (1985), 1–74  crossref  mathscinet
40. D. V. Vassilevich, “Heat kernel expansion: User's manual”, Phys. Rept., 388 (2003), 279–360  crossref  mathscinet  zmath
41. D. Fursaev, D. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory, Springer, 2011, 1–304  mathscinet
42. A. V. Ivanov, “Diagrammatika teplovogo yadra kovariantnogo operatora Laplasa”, TMF, 198:1 (2019), 113–132  mathnet  crossref  mathscinet  zmath
43. A. V. Ivanov, N. V. Kharuk, “Non-recursive formula for trace of heat kernel”, Days on Diffraction (DD), IEEE, 2019, 74–77
44. A. V. Ivanov, N. V. Kharuk, “Teplovoe yadro: metod sobstvennogo vremeni, kalibrovka Foka-Shvingera, integral po putyam i liniya Vilsona”, TMF, 205:2 (2020), 242–261  mathnet  crossref  mathscinet  zmath
45. A. V. Ivanov, N. V. Kharuk, “Special functions for heat kernel expansion”, Eur. Phys. J. Plus, 137 (2022), 1060  crossref  mathscinet
46. A. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, London, UK, 1987  mathscinet  zmath
47. P. V. Akacevich, A. V. Ivanov, On two-loop effective action of 2D sigma model, arXiv: 2304.02374


© Steklov Math. Inst. of RAS, 2025