|
|
|
Литература
|
|
|
1. |
A. V. Agibalova, M. M. Malamud, and L. L. Oridoroga, “On the completeness of general boundary value problems for $2 \times 2$ first-order systems of ordinary differential equations”, Methods of Functional Analysis and Topology, 18:1 (2012), 4–18 |
2. |
G. D. Birkhoff and R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58 (1923), 49–128 |
3. |
P. Djakov and B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 |
4. |
P. Djakov and B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 |
5. |
P. Djakov and B. Mityagin, “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 |
6. |
Yu. P. Ginzburg, “The almost invariant spectral propeties of contractions and the multiplicative properties of analytic operator-functions”, Funct. Anal. Appl., 5:3 (1971), 197–205 |
7. |
A. M. Gomilko and L. Rzepnicki, “On asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential”, Journal of Spectral Theory, 10:3 (2020), 747–786 |
8. |
A. P. Kosarev and A. A. Shkalikov, “Spectral asymptotics of solutions of a $2 \times 2$ system of first-order ordinary differential equations”, Math. Notes, 110:5–6 (2021), 967–971 |
9. |
A. P. Kosarev and A. A. Shkalikov, Spectral asymptotics for solutions of $2 \times 2$ system of ordinary differential equations of the first order, arXiv: 2212.06227 |
10. |
V. M. Kurbanov and A. M. Abdullayeva, “Bessel property and basicity of the system of root vector-functions of Dirac operator with summable coefficient”, Operators and Matrices, 12:4 (2018), 943–954 |
11. |
A. A. Lunyov and M. M. Malamud, “On the completeness of root vectors for first-order systems: application to the Regge problem”, Dokl. Math., 88:3 (2013), 678–683 |
12. |
A. A. Lunyov and M. M. Malamud, “On spectral synthesis for dissipative Dirac type operators”, Integr. Equ. Oper. Theory, 90 (2014), 79–106 |
13. |
A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of the root vector system for Dirac-type $2 \times 2$ systems”, Dokl. Math., 90:2 (2014), 556–561 |
14. |
A. A. Lunyov and M. M. Malamud, “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectral Theory, 5:1 (2015), 17–70 |
15. |
A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. Math. Anal. Appl., 441 (2016), 57–103 |
16. |
A. A. Lunyov and M. M. Malamud, On transformation operators and Riesz basis property of root vectors system for $n \times n$ Dirac type operators. Application to the Timoshenko beam model, arXiv: 2112.07248 |
17. |
A. A. Lunyov and M. M. Malamud, “Stability of spectral characteristics of boundary value problems for $2 \times 2$ Dirac type systems. Applications to the damped string”, J. Differential Equations, 313 (2022), 633–742 |
18. |
A. Lunev, M. Malamud, “On characteristic determinants of boundary value problems for Dirac type systems”, Zap. Nauchn. Sem. POMI, 516, 2022, 69–120 |
19. |
A. S. Makin, “On the completeness of the system of root functions of the Sturm–Liouville operator with degenerate boundary conditions”, Differ. Equ., 50:6 (2014), 835–839 |
20. |
A. S. Makin, “Regular boundary value problems for the Dirac operator”, Doklady Mathematics, 101:3 (2020), 214–217 |
21. |
A. S. Makin, “On the spectrum of two-point boundary value problems for the Dirac operator”, Differ. Equ., 57:8 (2021), 993–1002 |
22. |
A. S. Makin, “On convergence of spectral expansions of Dirac operators with regular boundary conditions”, Math. Nachr., 295:1 (2022), 189–210 |
23. |
A. S. Makin, On the completeness of root function system of the Dirac operator with two-point boundary conditions, arXiv: 2304.06108 |
24. |
M. M. Malamud, “Similarity of Volterra operators and related questions of the theory of differential equations of fractional order”, Trans. Moscow Math. Soc., 55 (1994), 57–122 |
25. |
M. M. Malamud, “On the completeness of a system of root vectors of the Sturm-Liouville operator with general boundary conditions”, Funct. Anal. Appl., 42:3 (2008), 198–204 |
26. |
M. M. Malamud and L. L. Oridoroga, “Completeness theorems for systems of differential equations”, Funct. Anal. Appl., 34:4 (2000), 308–310 |
27. |
M. M. Malamud and L. L. Oridoroga, “On the completeness of the system of root vectors for second-order systems”, Dokl. Math., 82:3 (2010), 899–904 |
28. |
M. M. Malamud and L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980 |
29. |
V. A. Marchenko, Sturm–Liouville operators and applications, Operator Theory: Advances and Appl., 22, Birkhäuser Verlag, Basel, 1986 |
30. |
S. P. Novikov, S. V. Manakov, L. P. Pitaevskij, and V. E. Zakharov, Theory of solitons. The inverse scattering method, Springer-Verlag, 1984 |
31. |
L. Rzepnicki, “Asymptotic behavior of solutions of the Dirac system with an integrable potential”, Integral Equations Operator Theory, 93:55 (2021), 24 pp. |
32. |
A. M. Savchuk and I. V. Sadovnichaya, “The Riesz basis property with brackets for the Dirac system with a summable potential”, J. Math. Sci. (N.Y.), 233:4 (2018), 514–540 |
33. |
A. M. Savchuk and A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5–6 (2014), 777–810 |