RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ

Зап. научн. сем. ПОМИ, 2023, том 527, страницы 94–136 (Mi znsl7392)

Об асимптотическом разложении характеристического определителя для $2 \times 2$-систем типа Дирака
А. А. Лунёв, М. М. Маламуд

Литература

1. A. V. Agibalova, M. M. Malamud, and L. L. Oridoroga, “On the completeness of general boundary value problems for $2 \times 2$ first-order systems of ordinary differential equations”, Methods of Functional Analysis and Topology, 18:1 (2012), 4–18
2. G. D. Birkhoff and R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58 (1923), 49–128
3. P. Djakov and B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462
4. P. Djakov and B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332
5. P. Djakov and B. Mityagin, “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398
6. Yu. P. Ginzburg, “The almost invariant spectral propeties of contractions and the multiplicative properties of analytic operator-functions”, Funct. Anal. Appl., 5:3 (1971), 197–205  mathnet
7. A. M. Gomilko and L. Rzepnicki, “On asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential”, Journal of Spectral Theory, 10:3 (2020), 747–786
8. A. P. Kosarev and A. A. Shkalikov, “Spectral asymptotics of solutions of a $2 \times 2$ system of first-order ordinary differential equations”, Math. Notes, 110:5–6 (2021), 967–971  mathnet
9. A. P. Kosarev and A. A. Shkalikov, Spectral asymptotics for solutions of $2 \times 2$ system of ordinary differential equations of the first order, arXiv: 2212.06227
10. V. M. Kurbanov and A. M. Abdullayeva, “Bessel property and basicity of the system of root vector-functions of Dirac operator with summable coefficient”, Operators and Matrices, 12:4 (2018), 943–954
11. A. A. Lunyov and M. M. Malamud, “On the completeness of root vectors for first-order systems: application to the Regge problem”, Dokl. Math., 88:3 (2013), 678–683
12. A. A. Lunyov and M. M. Malamud, “On spectral synthesis for dissipative Dirac type operators”, Integr. Equ. Oper. Theory, 90 (2014), 79–106
13. A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of the root vector system for Dirac-type $2 \times 2$ systems”, Dokl. Math., 90:2 (2014), 556–561
14. A. A. Lunyov and M. M. Malamud, “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectral Theory, 5:1 (2015), 17–70
15. A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. Math. Anal. Appl., 441 (2016), 57–103
16. A. A. Lunyov and M. M. Malamud, On transformation operators and Riesz basis property of root vectors system for $n \times n$ Dirac type operators. Application to the Timoshenko beam model, arXiv: 2112.07248
17. A. A. Lunyov and M. M. Malamud, “Stability of spectral characteristics of boundary value problems for $2 \times 2$ Dirac type systems. Applications to the damped string”, J. Differential Equations, 313 (2022), 633–742
18. A. Lunev, M. Malamud, “On characteristic determinants of boundary value problems for Dirac type systems”, Zap. Nauchn. Sem. POMI, 516, 2022, 69–120  mathnet
19. A. S. Makin, “On the completeness of the system of root functions of the Sturm–Liouville operator with degenerate boundary conditions”, Differ. Equ., 50:6 (2014), 835–839
20. A. S. Makin, “Regular boundary value problems for the Dirac operator”, Doklady Mathematics, 101:3 (2020), 214–217
21. A. S. Makin, “On the spectrum of two-point boundary value problems for the Dirac operator”, Differ. Equ., 57:8 (2021), 993–1002
22. A. S. Makin, “On convergence of spectral expansions of Dirac operators with regular boundary conditions”, Math. Nachr., 295:1 (2022), 189–210
23. A. S. Makin, On the completeness of root function system of the Dirac operator with two-point boundary conditions, arXiv: 2304.06108
24. M. M. Malamud, “Similarity of Volterra operators and related questions of the theory of differential equations of fractional order”, Trans. Moscow Math. Soc., 55 (1994), 57–122
25. M. M. Malamud, “On the completeness of a system of root vectors of the Sturm-Liouville operator with general boundary conditions”, Funct. Anal. Appl., 42:3 (2008), 198–204  mathnet
26. M. M. Malamud and L. L. Oridoroga, “Completeness theorems for systems of differential equations”, Funct. Anal. Appl., 34:4 (2000), 308–310  mathnet
27. M. M. Malamud and L. L. Oridoroga, “On the completeness of the system of root vectors for second-order systems”, Dokl. Math., 82:3 (2010), 899–904
28. M. M. Malamud and L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980
29. V. A. Marchenko, Sturm–Liouville operators and applications, Operator Theory: Advances and Appl., 22, Birkhäuser Verlag, Basel, 1986
30. S. P. Novikov, S. V. Manakov, L. P. Pitaevskij, and V. E. Zakharov, Theory of solitons. The inverse scattering method, Springer-Verlag, 1984
31. L. Rzepnicki, “Asymptotic behavior of solutions of the Dirac system with an integrable potential”, Integral Equations Operator Theory, 93:55 (2021), 24 pp.
32. A. M. Savchuk and I. V. Sadovnichaya, “The Riesz basis property with brackets for the Dirac system with a summable potential”, J. Math. Sci. (N.Y.), 233:4 (2018), 514–540  mathnet
33. A. M. Savchuk and A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5–6 (2014), 777–810  mathnet


© МИАН, 2025