RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2003, Volume 300, Pages 122–134 (Mi znsl988)

Creating transverse homoclinic connections in planar billiards
V. J. Donnay

References

1. M. Bialy, “Convex billiards and a theorem by E. Hopf”, Math. Z., 214:1 (1993), 147–154  crossref  mathscinet  zmath
2. I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic Theory, Springer Verlag, 1982  mathscinet  zmath
3. A. Delshams, R. Ramírez-Ros, “Poincare–Melnikov–Arnold method for analytic planar maps”, Nonlinearity, 9:1 (1996), 1–26  crossref  mathscinet  zmath  adsnasa
4. A. Delshams, R. Ramírez-Ros, “On Birkhoff's conjecture about convex billiards”, Proceedings of the 2nd Catalan Days on Applied Mathematics (Odeillo, 1995), Collect. Études, Presses Univ. Perpignan, 1995, 85–94  mathscinet  zmath
5. V. J. Donnay, “Using integrability to produce chaos: billiards with positive entropy”, Comm. Math. Phys., 141 (1991), 225–257  crossref  mathscinet  zmath  adsnasa
6. V. J. Donnay, “Transverse homoclinic connections for geodesic flows”, Hamiltonian dynamical systems (Cincinnati, OH, 1992), IMA Vol. Math. Appl., 63, Springer, New York, 1995, 115–125  mathscinet  zmath
7. M. M. Dvorin, V. F. Lazutkin, “Existence of an infinite number of elliptic and hyperbolic periodic trajectories for convex billiards”, Funk. Anal. Priloz., 7:2 (1973), 20–27  mathnet  mathscinet  zmath
8. V. Gelfreich, “A century of separatrices splitting in Hamiltonian dynamical systems: perturbation theory, exponential smallness”, XIII International Congress on Mathematical Physics, Int. Press, Boston, MA, London, 2000, 73–86  mathscinet
9. V. Gelfreich, V. F. Lazutkin, “Splitting of separatrices: perturbation theory and exponential smallness”, Uspekhi Mat. Nauk, 56:3(339) (2001), 79–142  mathnet  mathscinet
10. N. Innami, “Geometry of geodesics for convex billiards and circular billiards”, Nihonkai Math. J., 13:1 (2002), 73–120  mathscinet  zmath
11. Gwang Il Kim, “Elliptic Birkhoff's billiards with $C^2$-generic global perturbations”, Bull. Korean Math. Soc., 36:1 (1999), 147–159  mathscinet  zmath
12. G. Knieper, H. Weiss, “A surface with positive curvature and positive topological entropy”, J. Differential Geom., 39:2 (1994), 229–249  mathscinet  zmath
13. H. E. Lomeli, “Perturbations of elliptic billiards”, Phys. D, 99:1 (1996), 59–80  crossref  mathscinet  zmath
14. G. Paternain, “Real analytic convex surfaces with positive topological entropy and rigid body dynamics”, Manuscripta Math., 78:4 (1993), 397–402  crossref  mathscinet  zmath
15. D. Petroll, Existenz und Transversalitt von Homoklinen und Heteroklinen Orbits beim Geodtischen Fluss, Thesis, Universitt Freiburg, 1996  zmath
16. Ya. G. Sinai, Introduction to Ergodic Theory, Princeton University Press, Princeton, 1976  mathscinet
17. M. B. Tabanov, “Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse”, Chaos, 4:4 (1994), 595–606  crossref  mathscinet  zmath  adsnasa
18. M. Wojtkowski, “Principles for the design of billiards with nonvanishing Lyapunov exponent”, Commun. Math. Phys., 105 (1986), 319–414  crossref  mathscinet
19. M. Wojtkowski, “Two applications of Jacobi fields to the billiard ball problem”, J. Differential Geom., 40:1 (1994), 155–164  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025