RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2003, Volume 300, Pages 145–154 (Mi znsl990)

Recent results on the Fermi–Pasta–Ulam problem
L. Galgani, A. Giorgilli

References

1. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos document LA–1940, 1955  zmath
2. F. M. Izrailev, B. V. Chirikov, “Stochasticity of the simpliest dynamical model with divided phase space”, Dokl. Akad. Nauk. SSSR, 166 (1966), 57  mathnet
3. A. M. Kolmogorov, “Preservation of conditionally periodic movements with small change in the Hamilton function”, Dokl. Akad. Nauk SSSR, 98 (1954), 527  mathscinet  zmath
4. J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Gött, II Math. Phys. Kl., 1962 (1962), 1–20  mathscinet  zmath
5. V. I. Arnold, “Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian”, Usp. Mat. Nauk, 18 (1963), 13  mathnet  mathscinet
6. D. L. Shepelyansky, “Low–energy chaos in the Fermi–Pasta–Ulam problem”, Nonlinearity, 10 (1997), 1331–1338  crossref  mathscinet  zmath  adsnasa
7. P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, “Anharmonic chain with Lennard–Jones interaction”, Phys. Rew. A, 2 (1970), 2013–2019  crossref  adsnasa
8. M. C. Carotta, C. Ferrario, G. Lo Vecchio, B. Carazza, L. Galgani, “New phenomenon in the stochastic transition of coupled oscillators”, Phys. Rev. A, 17 (1978), 786  crossref  adsnasa
9. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Relaxation to different stationary states in the Fermi–Pasta–Ulam model”, Phys. Rev. A, 28 (1983), 3544–3552  crossref  adsnasa
10. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi–Pasta–Ulam model”, Phys. Rev. A, 31 (1985), 1039–1045  crossref  adsnasa
11. R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Further results on the equipartition threshold in large nonlinear Hamiltonian systems”, Phys. Rev. A, 31 (1985), 2740–2742  crossref  adsnasa
12. S. Isola, R. Livi, S. Ruffo, A. Vulpiani, “Stability and chaos in Hamiltonian dynamics”, Pys. Rev. A, 33 (1986), 1163–1170  crossref  mathscinet  adsnasa
13. R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Chaotic behaviour in nonlinear Hamiltonian systems and equilibrium statistical mechanics”, J. Stat. Phys., 48 (1987), 539–559  crossref  mathscinet  zmath  adsnasa
14. H. Kantz, “Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems”, Physica D, 39 (1989), 322–335  crossref  mathscinet  zmath  adsnasa
15. M. Pettini, M. Landolfi, “Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics”, Phys. Rev. A, 41 (1990), 768–783  crossref  mathscinet  adsnasa
16. M. Pettini, M. Cerruti-Sola, “Strong stochasticity threshold in nonlinear Hamiltonian systems: effect of mixing times”, Phys. Rev. A, 44 (1991), 975–987  crossref  adsnasa
17. H. Kantz, R. Livi, S. Ruffo, “Equipartition thresholds in chains of anharmonic oscillators”, J. Stat. Phys., 76 (1994), 627–643  crossref  mathscinet  adsnasa
18. J. De Luca, A. J. Lichtenberg, S. Ruffo, “Energy transition and time scale to equipartition in the Fermi–Pasta–Ulam oscillator chain”, Phys. Rev. E, 51 (1995), 2877–2884  crossref  adsnasa
19. J. De Luca, A. J. Lichtenberg, S. Ruffo, “Universal evolution to equipartition in scillator chains”, Phys. Rev. E, 54 (1996), 2329–2333  crossref  adsnasa
20. J. De Luca, A. J. Lichtenberg, S. Ruffo, “Finite time to equiparittion in the thermodynamic limit”, Phys. Rev. E, 60 (1999), 3781–3786  crossref  adsnasa
21. A. Giorgilli, “Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point”, Ann. Ist. H. Poincaré, 48:4 (1988), 423–439  mathscinet  zmath
22. L. Galgani, A. Giorgilli, A. Martinoli, S. Vanzini, “On the problem of energy equipartition for large systems of the Fermi–Pasta–Ulam type: analytical and numerical estimates”, Physica D, 59 (1992), 334–348  crossref  mathscinet  zmath  adsnasa
23. G. Benettin, L. Galgani, A. Giorgilli, “Exponential law for the equipartition times among translational and vibrational degrees of freedom”, Phys. Lett. A, 120 (1987), 23–27  crossref  adsnasa
24. G. Benettin, L. Galgani, A. Giorgilli, “Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory,II”, Comm. Math. Phys., 121 (1989), 557–601  crossref  mathscinet  zmath  adsnasa
25. A. Carati, L. Galgani, A. Ponno, A. Giorgilli, “The Fermi–Pasta–Ulam problem”, N. Cim. (to appear)


© Steklov Math. Inst. of RAS, 2025