|
|
|
References
|
|
|
1. |
E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos document LA–1940, 1955 |
2. |
F. M. Izrailev, B. V. Chirikov, “Stochasticity of the simpliest dynamical model with divided phase space”, Dokl. Akad. Nauk. SSSR, 166 (1966), 57 |
3. |
A. M. Kolmogorov, “Preservation of conditionally periodic movements with small change in
the Hamilton function”, Dokl. Akad. Nauk SSSR, 98 (1954), 527 |
4. |
J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Gött, II Math. Phys. Kl., 1962 (1962), 1–20 |
5. |
V. I. Arnold, “Proof of a theorem of A. N. Kolmogorov on the invariance of
quasi-periodic motions under small perturbations of the Hamiltonian”, Usp. Mat. Nauk, 18 (1963), 13 |
6. |
D. L. Shepelyansky, “Low–energy chaos in the Fermi–Pasta–Ulam problem”, Nonlinearity, 10 (1997), 1331–1338 |
7. |
P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, “Anharmonic chain with Lennard–Jones interaction”, Phys. Rew. A, 2 (1970), 2013–2019 |
8. |
M. C. Carotta, C. Ferrario, G. Lo Vecchio, B. Carazza, L. Galgani, “New phenomenon in the stochastic transition of coupled oscillators”, Phys. Rev. A, 17 (1978), 786 |
9. |
R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Relaxation to different stationary states in the Fermi–Pasta–Ulam
model”, Phys. Rev. A, 28 (1983), 3544–3552 |
10. |
R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Equipartition threshold in nonlinear large Hamiltonian systems: the
Fermi–Pasta–Ulam model”, Phys. Rev. A, 31 (1985), 1039–1045 |
11. |
R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Further results on the equipartition threshold in large nonlinear
Hamiltonian systems”, Phys. Rev. A, 31 (1985), 2740–2742 |
12. |
S. Isola, R. Livi, S. Ruffo, A. Vulpiani, “Stability and chaos in Hamiltonian dynamics”, Pys. Rev. A, 33 (1986), 1163–1170 |
13. |
R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Chaotic behaviour in nonlinear Hamiltonian systems and equilibrium
statistical mechanics”, J. Stat. Phys., 48 (1987), 539–559 |
14. |
H. Kantz, “Vanishing stability thresholds in the thermodynamic limit of
nonintegrable conservative systems”, Physica D, 39 (1989), 322–335 |
15. |
M. Pettini, M. Landolfi, “Relaxation properties and ergodicity breaking in nonlinear Hamiltonian
dynamics”, Phys. Rev. A, 41 (1990), 768–783 |
16. |
M. Pettini, M. Cerruti-Sola, “Strong stochasticity threshold in nonlinear Hamiltonian systems: effect
of mixing times”, Phys. Rev. A, 44 (1991), 975–987 |
17. |
H. Kantz, R. Livi, S. Ruffo, “Equipartition thresholds in chains of anharmonic oscillators”, J. Stat. Phys., 76 (1994), 627–643 |
18. |
J. De Luca, A. J. Lichtenberg, S. Ruffo, “Energy transition and time scale to equipartition in the
Fermi–Pasta–Ulam oscillator chain”, Phys. Rev. E, 51 (1995), 2877–2884 |
19. |
J. De Luca, A. J. Lichtenberg, S. Ruffo, “Universal evolution to equipartition in scillator chains”, Phys. Rev. E, 54 (1996), 2329–2333 |
20. |
J. De Luca, A. J. Lichtenberg, S. Ruffo, “Finite time to equiparittion in the thermodynamic limit”, Phys. Rev. E, 60 (1999), 3781–3786 |
21. |
A. Giorgilli, “Rigorous results on the power expansions for the integrals of
a Hamiltonian system near an elliptic equilibrium point”, Ann. Ist. H. Poincaré, 48:4 (1988), 423–439 |
22. |
L. Galgani, A. Giorgilli, A. Martinoli, S. Vanzini, “On the problem of energy equipartition for large systems of the
Fermi–Pasta–Ulam type: analytical and numerical estimates”, Physica D, 59 (1992), 334–348 |
23. |
G. Benettin, L. Galgani, A. Giorgilli, “Exponential law for the equipartition times among translational and
vibrational degrees of freedom”, Phys. Lett. A, 120 (1987), 23–27 |
24. |
G. Benettin, L. Galgani, A. Giorgilli, “Realization of holonomic constraints and freezing of high frequency
degrees of freedom in the light of classical perturbation theory,II”, Comm. Math. Phys., 121 (1989), 557–601 |
25. |
A. Carati, L. Galgani, A. Ponno, A. Giorgilli, “The Fermi–Pasta–Ulam problem”, N. Cim. (to appear) |