RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI

Zap. Nauchn. Sem. POMI, 2003, Volume 300, Pages 155–166 (Mi znsl997)

On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points
S. V. Gonchenko, L. P. Shilnikov

References

1. S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional analytic area-preserving diffeomorphisms with infinitely many stable elliptic periodic points”, Regular and Chaotic Dynamics, 2:3–4 (1997), 106–123  mathnet  mathscinet  zmath
2. S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional area-preserving diffeomorphisms with infinitely many elliptic islands”, J. Stat. Phys., 101:1–2 (2000), 321–356  crossref  mathscinet  zmath
3. S. V. Gonchenko, L. P. Shilnikov, “Invariants of $\Omega$-conjugacy of diffeomorphisms with a structurally unstable homoclinic trajectory”, Ukrainian Math. J., 42:2 (1990), 134–140  crossref  mathscinet  zmath
4. S. V. Gonchenko, L. P. Shilnikov, “On moduli of systems with a structurally unstable homoclinic Poincare curve”, Izv. RAN, 41 (1992), 417–445  mathnet  crossref  mathscinet  zmath
5. S. V. Gonchenko, L. P. Shilnikov, “On dynamical systems with structurally unstable homoclinic curves”, Soviet Math. Dokl., 33:1 (1986), 234–238  mathscinet  zmath
6. S. V. Gonchenko, L. P. Shilnikov, “Arithmetic properties of topological invariants of systems with a structurally unstable homoclinic trajectory”, Ukr. Math. J., 39:1 (1987), 21–28  crossref  mathscinet  zmath
7. S. V. Gonchenko, L. P. Shilnikov, “On two-dimensional area-preserving mappings with homoclinic tangencies”, Dokl. Mathem., 63:3 (2001), 395–399  mathscinet  zmath
8. L. P. Shilnikov, “On a Poincaré-Birkhoff problem”, Math. Sb. USSR, 3:3 (1967), 353–371  mathnet  crossref
9. J. Moser, “The analytic invariants of an area-preserving mapping near a hyperbolic fixed point”, Comm. of Pure and Appl. Math., 9 (1956), 673–692  crossref  mathscinet  zmath
10. N. K. Gavrilov, L. P. Shilnikov, “On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve, I”, Math. Sb. USSR, 17 (1972), 467–485  mathnet  crossref; “II”, 19 (1973), 139–156  mathnet  crossref
11. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, 1998  mathscinet  zmath
12. S. V. Gonchenko, L. P. Shilnikov, “On geometrical properties of two-dimensional diffeomorphisms with homoclinic tangencies”, Int. J. of Bifurcation and Chaos, 5:3 (1995), 819–829  crossref  mathscinet  zmath
13. V. S. Afraimovich, L. P. Shilnikov, “Strange attractors and quasiattractors”, Nonlinear Dynamics and Turbulence, eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitmen, Boston, 1983, 1–34  mathscinet
14. V. S. Biragov, “Bifurcations in a two-parameter family of conservative mappings that are close to the Henon map”, Selecta Math. Sov., 9 (1990), 273–282  mathscinet  zmath


© Steklov Math. Inst. of RAS, 2025