RUS  ENG
Полная версия
КОНФЕРЕНЦИИ
Миникурс Альфонсо Соррентино "Action-minimizing methods in dynamics and geometry"
(17 февраля–4 марта 2020 г., МИАН, г. Москва)

In these lectures we discuss John Mather's variational approach to the study of convex and superlinear Hamiltonian systems, what is generally called Aubry-Mather theory. Starting from the observation that invariant Lagrangian graphs can be characterised in terms of their "action-minimizing" properties, we shall describe how analogue features can be traced in a more general setting, namely the so-called Tonelli Hamiltonian systems. This approach brings to light a plethora of compact invariant subsets for the system, which, under many points of view, can be seen as a generalisation of invariant Lagrangian graphs, despite not being in general either submanifolds or regular.

Besides being very significant from a dynamical systems point of view, these objects also appear in the study of weak solutions of the Hamilton-Jacobi equation (weak KAM theory) and play, as well, an important role in other different contexts: such as analysis, geometry, mathematical physics, billiard dynamics, etc. We shall also see how similar results can be also extended to some non-conservative setting, namely the case of so-called conformally symplectic systems.

Tentative course content:

Some References:


Руководитель
Соррентино Альфонсо

Организации
Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
Математический центр мирового уровня «Математический институт им. В.А. Стеклова Российской академии наук» (МЦМУ МИАН)




© МИАН, 2024