![]() |
|
JOURNALS |
Symmetry, Integrability and Geometry: Methods and Applications |
![]() |
Journal archive |
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | |
2-years impact-factor Math-Net.Ru | 0.822 | 0.912 | 0.737 | 1.198 | 1.164 | 0.816 | 1.237 | 1.500 | 1.422 | 1.288 | 1.176 | 0.916 | 0.807 | 0.897 | 0.880 |
5-years impact-factor Math-Net.Ru | 0.905 | 1.018 | 0.867 | 1.029 | 1.218 | 1.032 | 1.199 | 1.199 | 1.252 | 1.033 | 0.973 | 0.850 | |||
Annual citation index Math-Net.Ru | 0.265 | 0.301 | 0.248 | 0.255 | 0.222 | 0.339 | 0.208 | 0.431 | 0.378 | 0.538 | 0.387 | 0.400 | 0.309 | 0.337 | 0.238 |
2-years impact-factor Math-Net.Ru of the journal in 2011 is calculated
as the number of citations in 2011 to the scientific papers published during
2009–2010.
The table below contains the list of citations in 2011 to the papers
published in 2009–2010. We take into account all citing publications
we found from different sources, mostly from references lists available
on
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year | Scientific papers | Citations | Citated papers | Journal Self-citations | |
2011 | 1.176 | 210 | 247 | 119 | 10.9% |
|
|||||
N | Citing pulication | Cited paper | |||
1. | Miloslav Znojil, “Planarizable Supersymmetric Quantum Toboggans”, SIGMA, 7 (2011), 018, 24 pp. |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
2. | Znojil M., “CryptoHermitian Hamiltonians on graphs. II: Hermitizations”, Internat. J. Theoret. Phys., 50:5 (2011), |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
3. | Znojil M., “An exactly solvable quantum-lattice model with a tunable degree of nonlocality”, J. Phys. A, 44:7 (2011), 075302, 20 pp. |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
4. | Bagarello F., “Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity”, Phys Lett A, 376:2 (2011), |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
5. | Bagarello F., Znojil M., “Nonlinear pseudo-bosons versus hidden Hermiticity”, Journal of Physics A-Mathematical and Theoretical, 44:41 (2011), 415305 |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
6. | Znojil M., “Decays of degeneracies in PT-symmetric ring-shaped lattices”, Phys Lett A, 375:39 (2011), |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
7. | Znojil M., “The crypto-Hermitian smeared-coordinate representation of wave functions”, Phys Lett A, 375:36 (2011), |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
8. | Znojil M., “Symbolic-Manipulation Constructions of Hilbert-Space Metrics in Quantum Mechanics”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 6885, eds. Gerdt V., Koepf W., Mayr E., Vorozhtsov E., Springer-Verlag Berlin, 2011, |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
9. | Znojil M., “Discrete Quantum Square Well of the First Kind”, Phys. Lett. A, 375:25 (2011), |
Three-Hilbert-Space Formulation of Quantum Mechanics Miloslav Znojil SIGMA, 5 (2009), |
|||
10. | Braverman A., Finkelberg M., “Dynamical Weyl Groups and Equivariant Cohomology of Transversal Slices on Affine Grassmannians”, Math. Res. Lett., 18:3 (2011), |
Quiver Varieties and Branching Hiraku Nakajima SIGMA, 5 (2009), |
|||
11. | Cherkis S.A., “Instantons on Gravitons”, Comm Math Phys, 306:2 (2011), |
Quiver Varieties and Branching Hiraku Nakajima SIGMA, 5 (2009), |
|||
12. | G. Cerulli Irelli, “Quiver Grassmannians associated with string modules”, J Algebr Comb, 33:2 (2011), |
Quiver Varieties and Branching Hiraku Nakajima SIGMA, 5 (2009), |
|||
13. | Jan E. Grabowski, “Examples of quantum cluster algebras associated to partial flag varieties”, Journal of Pure and Applied Algebra, 215:7 (2011), |
Quiver Varieties and Branching Hiraku Nakajima SIGMA, 5 (2009), |
|||
14. | Zuevsky A., “ |
Heisenberg-Type Families in $U_q(\widehat{sl_2})$ Alexander Zuevsky SIGMA, 5 (2009), |
|||
15. | Znojil M., Tater M., “CPT-Symmetric Discrete Square Well”, Internat. J. Theoret. Phys., 50:4 (2011), |
On the Spectrum of a~Discrete Non-Hermitian Quantum System Ebru Ergun SIGMA, 5 (2009), |
|||
16. | Sarah Post, “Models of Quadratic Algebras Generated by Superintegrable Systems in 2D”, SIGMA, 7 (2011), 036, 20 pp. |
Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials Ernest G. Kalnins, Jonathan M. Kress, Willard Miller Jr., Sarah Post SIGMA, 5 (2009), |
|||
17. | Kalnins E.G., Kress J.M., Miller Willard J., Post S., “Laplace-type equations as conformal superintegrable systems”, Adv. in Appl. Math., 46:1-4 (2011), |
Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials Ernest G. Kalnins, Jonathan M. Kress, Willard Miller Jr., Sarah Post SIGMA, 5 (2009), |
|||
18. | Marquette I., “Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems”, J. Math. Phys., 52:4 (2011), 042301 |
Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials Ernest G. Kalnins, Jonathan M. Kress, Willard Miller Jr., Sarah Post SIGMA, 5 (2009), |
|||
19. | de Goursac A., Wallet J.-Ch., “Symmetries of noncommutative scalar field theory”, J. Phys. A, 44:5 (2011), 055401, 12 pp. |
Derivations of the Moyal Algebra and Noncommutative Gauge Theories Jean-Christophe Wallet SIGMA, 5 (2009), |
|||
20. | Cagnache E., D'Andrea F., Martinetti P., Wallet J.-Ch., “The spectral distance in the Moyal plane”, J Geom Phys, 61:10 (2011), |
Derivations of the Moyal Algebra and Noncommutative Gauge Theories Jean-Christophe Wallet SIGMA, 5 (2009), |
|||
|