![]() |
|
JOURNALS |
Symmetry, Integrability and Geometry: Methods and Applications |
![]() |
Journal archive |
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | |
2-years impact-factor Math-Net.Ru | 0.822 | 0.912 | 0.737 | 1.198 | 1.164 | 0.816 | 1.237 | 1.500 | 1.422 | 1.288 | 1.176 | 0.916 | 0.807 | 0.897 | 0.880 |
5-years impact-factor Math-Net.Ru | 0.905 | 1.018 | 0.867 | 1.029 | 1.218 | 1.032 | 1.199 | 1.199 | 1.252 | 1.033 | 0.973 | 0.850 | |||
Annual citation index Math-Net.Ru | 0.265 | 0.301 | 0.248 | 0.255 | 0.222 | 0.339 | 0.208 | 0.431 | 0.378 | 0.538 | 0.387 | 0.400 | 0.309 | 0.337 | 0.238 |
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year | Scientific papers | Citations | Citated papers | Journal Self-citations | |
2021 | 0.822 | 247 | 203 | 110 | 5.9% |
|
|||||
N | Citing pulication | Cited paper | |||
1. | Frédéric Barbaresco, Signals and Communication Technology, Progress in Information Geometry, 2021, |
Coadjoint Orbits of Lie Algebras and Cartan Class Michel Goze, Elisabeth Remm SIGMA, 15 (2019), |
|||
2. | D. J. J. Aleans, S. A. Tozoni, “Estimates for |
Relations between Schoenberg Coefficients on Real and Complex Spheres of Different Dimensions Pier Giovanni Bissiri, Valdir A. Menegatto, Emilio Porcu SIGMA, 15 (2019), |
|||
3. | A. D. Alkhaidari, “Eksponentsialnaya uderzhivayuschaya potentsialnaya yama”, TMF, 206:1 (2021), |
Solution of an Open Problem about Two Families of Orthogonal Polynomials Walter Van Assche SIGMA, 15 (2019), |
|||
4. | I. A. Assi, A. J. Sous, H. Bahlouli, “Treatment of a three-dimensional central potential with cubic singularity”, Eur. Phys. J. Plus, 136:1 (2021), 47 |
Solution of an Open Problem about Two Families of Orthogonal Polynomials Walter Van Assche SIGMA, 15 (2019), |
|||
5. | I. A. Assi, A. D. Alhaidari, H. Bahlouli, “Deformed Morse-like potential”, J. Math. Phys., 62:9 (2021), 093501 |
Solution of an Open Problem about Two Families of Orthogonal Polynomials Walter Van Assche SIGMA, 15 (2019), |
|||
6. | van Poppel L., “The Study of Metaphor in Argumentation Theory”, Argumentation, 35:1 (2021), |
Open Problems for Painlev\'e Equations Peter A. Clarkson SIGMA, 15 (2019), |
|||
7. | Sankaran G.K., “A Supersingular Coincidence”, Ramanujan J., 2021 |
Supersingular Elliptic Curves and Moonshine Victor Manuel Aricheta SIGMA, 15 (2019), |
|||
8. | Yuji Kodama, Yuancheng Xie, “Space Curves and Solitons of the KP Hierarchy. I. The |
On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions Atsushi Nakayashiki SIGMA, 15 (2019), |
|||
9. | A. Nakayashiki, “Tau functions of |
On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions Atsushi Nakayashiki SIGMA, 15 (2019), |
|||
10. | S. Abenda, “Kasteleyn theorem, geometric signatures and KP-II divisors on planar bipartite networks in the disk”, Math. Phys. Anal. Geom., 24:4 (2021), 35 |
On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions Atsushi Nakayashiki SIGMA, 15 (2019), |
|||
11. | S. Fomin, L. Setiabrata, “Heronian friezes”, Int. Math. Res. Notices, 2021:1 (2021), |
The Kashaev Equation and Related Recurrences Alexander Leaf SIGMA, 15 (2019), |
|||
12. | T. Cieslak, W. Krynski, “Geometric aspects of two- and threepeakons”, Nonlinearity, 34:9 (2021), |
Ghostpeakons and Characteristic Curves for the Camassa--Holm, Degasperis--Procesi and Novikov Equations Hans Lundmark, Budor Shuaib SIGMA, 15 (2019), |
|||
13. | A. G. Efstathiou, E. N. Petropoulou, “Peakons of Novikov equation via the homotopy analysis method”, Symmetry-Basel, 13:5 (2021), 738 |
Ghostpeakons and Characteristic Curves for the Camassa--Holm, Degasperis--Procesi and Novikov Equations Hans Lundmark, Budor Shuaib SIGMA, 15 (2019), |
|||
14. | A. Madiyeva, D. E. Pelinovsky, “Growth of perturbations to the peaked periodic waves in the Camassa-Holm equation”, SIAM J. Math. Anal., 53:3 (2021), |
Ghostpeakons and Characteristic Curves for the Camassa--Holm, Degasperis--Procesi and Novikov Equations Hans Lundmark, Budor Shuaib SIGMA, 15 (2019), |
|||
15. | Dumas D., Neitzke A., “Opers and Non-Abelian Hodge: Numerical Studies”, Exp. Math., 2021 |
Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space Laura Fredrickson SIGMA, 15 (2019), |
|||
16. | Kodera R., “On Guay'S Evaluation Map For Affine Yangians”, Algebr. Represent. Theory, 24:1 (2021), |
Braid Group Action on Affine Yangian Ryosuke Kodera SIGMA, 15 (2019), |
|||
17. | B. Balcerzak, “On symmetric brackets induced by linear connections”, Symmetry-Basel, 13:6 (2021), 1003 |
Almost Lie Algebroids and Characteristic Classes Marcela Popescu, Paul Popescu SIGMA, 15 (2019), |
|||
18. | K. Ito, T. Kondo, K. Kuroda, H. Shu, “ODE/IM correspondence for affine Lie algebras: a numerical approach”, J. Phys. A-Math. Theor., 54:4 (2021), 044001 |
A Solvable Deformation of Quantum Mechanics Alba Grassi, Marcos Mariño SIGMA, 15 (2019), |
|||
19. | B.-n. Du, M.-x. Huang, “Quantum periods and TBA-like equations for a class of Calabi-Yau geometries”, J. High Energy Phys., 2021, no. 1, 2 |
A Solvable Deformation of Quantum Mechanics Alba Grassi, Marcos Mariño SIGMA, 15 (2019), |
|||
20. | K. Imaizumi, “Quantum periods and TBA equations for |
A Solvable Deformation of Quantum Mechanics Alba Grassi, Marcos Mariño SIGMA, 15 (2019), |
|||
|