|
|
Publications in Math-Net.Ru
-
Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO
Prikl. Diskr. Mat., 2023, no. 62, 29–54
-
On a secondary construction of quadratic APN functions
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 37–39
-
On constructing APN permutations using subfunctions
Prikl. Diskr. Mat., 2018, no. 41, 17–27
-
Mathematical methods in solutions of the problems presented at the Third International Students' Olympiad in Cryptography
Prikl. Diskr. Mat., 2018, no. 40, 34–58
-
Vectorial $2$-to-$1$ functions as subfunctions of APN permutations
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 39–41
-
On constructing special APN functions and their link with APN permutations
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 36–38
-
On symmetric properties of APN functions
Diskretn. Anal. Issled. Oper., 23:1 (2016), 65–81
-
On special class of vectorial Boolean functions and the problem of APN permutations existence
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 19–21
-
Problems, solutions and experience of the first international student's Olympiad in cryptography
Prikl. Diskr. Mat., 2015, no. 3(29), 41–62
-
On the number of symmetric coordinate functions of APN function
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 23–25
-
On some open questions about APN functions
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 11–13
-
On the representation of S-boxes in block ciphers
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 30–32
-
An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”
Sib. Èlektron. Mat. Izv., 19:1 (2022), 9–37
-
The Seventh International Olympiad in Cryptography: problems and solutions
Sib. Èlektron. Mat. Izv., 18:2 (2021), 4–29
-
On the Sixth International Olympiad in Cryptography NSUCRYPTO
Diskretn. Anal. Issled. Oper., 27:4 (2020), 21–57
© , 2025