|
|
Publications in Math-Net.Ru
-
Maltsev equal-norm tight frames
Izv. RAN. Ser. Mat., 86:4 (2022), 162–174
-
Equivalence Classes of Parseval Frames
Mat. Zametki, 112:6 (2022), 850–866
-
Restoring the signal by modules of measurement
Vestnik SamU. Estestvenno-Nauchnaya Ser., 2016, no. 3-4, 63–74
-
Uncertainty principles for groups and reconstruction of signals
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 102–109
-
Optimization of Frame Representations for Compressed Sensing and Mercedes-Benz Frame
Trudy Mat. Inst. Steklova, 265 (2009), 211–219
-
Bessel Sequences as Projections of Orthogonal Systems
Mat. Zametki, 81:6 (2007), 893–903
-
$A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions
Mat. Zametki, 75:1 (2004), 115–134
-
Strictly Singular Embeddings
Funktsional. Anal. i Prilozhen., 36:1 (2002), 85–87
-
Sequence spaces $l_{p,q}$ in parabolistic characterizations of the weak type operators
Zap. Nauchn. Sem. POMI, 282 (2001), 160–191
-
Singularities of embedding operators between symmetric function spaces on $[0,1]$
Mat. Zametki, 62:4 (1997), 549–563
-
On the sharpness of inequalities for independent random variables in Lorentz spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4, 36–38
-
Lorentz spaces and almost-sure boundedness of sequences of independent random variables
Sibirsk. Mat. Zh., 30:2 (1989), 138–144
-
Cotype and type of Lorentz function spaces
Mat. Zametki, 32:2 (1982), 213–221
-
The structure of subspaces of the space $\Lambda_p(\varphi)$
Dokl. Akad. Nauk SSSR, 247:3 (1979), 552–554
-
Evgenii Mikhailovich Semenov (on his 60th birthday)
Uspekhi Mat. Nauk, 56:6(342) (2001), 171–175
-
XIII School on Operator Theory in Functional Spaces
Uspekhi Mat. Nauk, 44:3(267) (1989), 200–201
© , 2025