RUS  ENG
Full version
PEOPLE

Mednykh Alexander Dmitrievich

Publications in Math-Net.Ru

  1. Companion matrix for superposition of polynomials and its application to knot theory

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  72–80
  2. Hyperbolic volumes of two bridge cone-manifolds

    Bulletin of Irkutsk State University. Series Mathematics, 51 (2025),  21–33
  3. The structure of the characteristic polynomial of Laplace matrix for circulant graphs with non-fixed jumps

    Mat. Tr., 28:1 (2025),  94–112
  4. On the structure of Laplacian characteristic polynomial of circulant graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024),  34–39
  5. The Kirchhoff indices for circulant graphs

    Sibirsk. Mat. Zh., 65:6 (2024),  1191–1206
  6. The generating function is rational for the number of rooted forests in a circulant graph

    Mat. Tr., 26:2 (2023),  129–137
  7. Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians

    Uspekhi Mat. Nauk, 78:3(471) (2023),  115–164
  8. On Jacobian group and complexity of the $Y$-graph

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  662–673
  9. Plans' periodicity theorem for Jacobian of circulant graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  51–54
  10. Fixed points of cyclic groups acting purely harmonically on a graph

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  617–621
  11. Kirchhoff index for circulant graphs and its asymptotics

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  43–47
  12. On the structure of the critical group of a circulant graph with non-constant jumps

    Uspekhi Mat. Nauk, 75:1(451) (2020),  197–198
  13. Elementary formulas for Kirchhoff index of Möbius ladder and Prism graphs

    Sib. Èlektron. Mat. Izv., 16 (2019),  1654–1661
  14. Mirror symmetries of hyperbolic tetrahedral manifolds

    Sib. Èlektron. Mat. Izv., 15 (2018),  1850–1856
  15. On the asymptotics of volume for non-Euclidean simplices

    Uspekhi Mat. Nauk, 72:5(437) (2017),  195–196
  16. On the Oikawa and Arakawa theorems for graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  243–252
  17. Volumes of hyperbolic hexahedra with $\overline{3}$-symmetry

    Sib. Èlektron. Mat. Izv., 13 (2016),  1150–1158
  18. An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds

    Sib. Èlektron. Mat. Izv., 13 (2016),  1017–1025
  19. The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

    Sibirsk. Mat. Zh., 57:6 (2016),  1346–1360
  20. Recent progress in enumeration of hypermaps

    Zap. Nauchn. Sem. POMI, 446 (2016),  139–164
  21. On the existence of Euclidean structure on the figure eight knot with a bridge

    Yakutian Mathematical Journal, 22:4 (2015),  32–42
  22. On the pseudo-volume of a hyperbolic tetrahedron

    Yakutian Mathematical Journal, 22:4 (2015),  12–20
  23. On the volume of a hyperbolic octahedron with $\overline3$-symmetry

    Trudy Mat. Inst. Steklova, 288 (2015),  7–15
  24. On the Belyi functions of planar circular maps

    Fundam. Prikl. Mat., 18:6 (2013),  111–133
  25. On the enumeration of circular maps with given number of edges

    Sibirsk. Mat. Zh., 54:4 (2013),  788–806
  26. Î ôîðìóëå Áðàõìàãóïòû â ãåîìåòðèè Ëîáà÷åâñêîãî

    Mat. Pros., Ser. 3, 16 (2012),  172–180
  27. Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane

    Sib. Èlektron. Mat. Izv., 9 (2012),  247–255
  28. A volume formula for $\mathbb Z_2$-symmetric spherical tetrahedra

    Sibirsk. Mat. Zh., 52:3 (2011),  582–599
  29. Geometric orbifolds with torsion free derived subgroup

    Sibirsk. Mat. Zh., 51:1 (2010),  48–61
  30. The Volume of the Lambert Cube in Spherical Space

    Mat. Zametki, 86:2 (2009),  190–201
  31. Spherical structures on torus knots and links

    Sibirsk. Mat. Zh., 50:5 (2009),  1083–1096
  32. Discrete Analytical Functions of Several Variables and Taylor Expansion

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009),  38–46
  33. Löbell manifolds revised

    Sib. Èlektron. Mat. Izv., 4 (2007),  605–609
  34. Elementary formulas for a hyperbolic tetrahedron

    Sibirsk. Mat. Zh., 47:4 (2006),  831–841
  35. Hyperbolic 3-Manifolds with Geodesic Boundary: Enumeration and Volume Calculation

    Trudy Mat. Inst. Steklova, 252 (2006),  167–183
  36. A formula for the volume of a hyperbolic tetrahedon

    Uspekhi Mat. Nauk, 60:2(362) (2005),  159–160
  37. On the volume of a symmetric tetrahedron in hyperbolic and spherical spaces

    Sibirsk. Mat. Zh., 45:5 (2004),  1022–1031
  38. Surgeries on small volume hyperbolic 3-orbifolds

    Sibirsk. Mat. Zh., 42:2 (2001),  318–331
  39. Spherical Coxeter groups and hyperelliptic 3-manifolds

    Mat. Zametki, 66:2 (1999),  173–177
  40. Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions

    Sibirsk. Mat. Zh., 40:5 (1999),  1035–1051
  41. Three-dimensional hyperelliptic manifolds and Hamiltonian graphs

    Sibirsk. Mat. Zh., 40:4 (1999),  745–763
  42. The Heegaard genus of hyperbolic 3-manifolds of small volume

    Sibirsk. Mat. Zh., 37:5 (1996),  1013–1018
  43. Fibonacci manifolds as two-fold coverings of the three-dimensional sphere and the Meyerhoff–Neumann conjecture

    Sibirsk. Mat. Zh., 37:3 (1996),  534–542
  44. Hyperbolic volumes of Fibonacci manifolds

    Sibirsk. Mat. Zh., 36:2 (1995),  266–277
  45. Limit ordinals in the Thurston–Jorgensen theorem on the volumes of three-dimensional hyperbolic manifolds

    Dokl. Akad. Nauk, 336:1 (1994),  7–10
  46. Geometric properties of discrete groups acting with fixed points in a Lobachevskii space

    Dokl. Akad. Nauk SSSR, 300:1 (1988),  27–30
  47. The isometry group of the hyperbolic space of a Seifert–Weber dodecahedron

    Sibirsk. Mat. Zh., 28:5 (1987),  134–144
  48. The number of nonequivalent coverings over a compact nonorientable surface

    Sibirsk. Mat. Zh., 27:1 (1986),  123–131
  49. Groups of automorphisms of three-dimensional hyperbolic manifolds

    Dokl. Akad. Nauk SSSR, 285:1 (1985),  40–44
  50. Nonequivalent coverings of Riemann surfaces with a prescribed ramification type

    Sibirsk. Mat. Zh., 25:4 (1984),  120–142
  51. On the Hurwitz problem on the number of inequivalent coverings over a compact Riemann surface

    Sibirsk. Mat. Zh., 23:3 (1982),  155–160
  52. On the solution of the Hurwitz problem on the number of nonequivalent coverings over a compact Riemann surface

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  537–542
  53. On unramified coverings of compact Riemann surfaces

    Dokl. Akad. Nauk SSSR, 244:3 (1979),  529–532
  54. Determination of the number of nonequivalent coverings over a compact Riemann surface

    Dokl. Akad. Nauk SSSR, 239:2 (1978),  269–271
  55. A class of difference equations with polynomial coefficients

    Sibirsk. Mat. Zh., 19:6 (1978),  1315–1331
  56. On an example of a compact Riemann surface with trivial automorphism group

    Dokl. Akad. Nauk SSSR, 237:1 (1977),  32–34
  57. On branched coverings of Riemann surfaces with the trivial group of covering transformations

    Dokl. Akad. Nauk SSSR, 235:6 (1977),  1267–1269
  58. On semidirect products of discontinuous transformation groups

    Dokl. Akad. Nauk SSSR, 225:5 (1975),  1016–1017

  59. Viktor Vasil’evich Chueshev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  69–79
  60. Vladislav Vasil'evich Aseev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  43–57
  61. On Graphs and Groups, Spectra and Symmetries held on August 15–28, 2016, Novosibirsk, Russia

    Sib. Èlektron. Mat. Izv., 13 (2016),  1369–1382
  62. Workshop on geometry and topology of three-dimensional manifolds

    Sib. Èlektron. Mat. Izv., 3 (2006),  1–3


© Steklov Math. Inst. of RAS, 2025