RUS  ENG
Full version
PEOPLE

Fedotov Aleksandr Aleksandrovich

Publications in Math-Net.Ru

  1. On the surface wave arising after the delocalization of a quantum particle during adiabatic evolution

    Algebra i Analiz, 36:1 (2024),  204–233
  2. A series of spectral gaps for the almost Mathieu operator with a small coupling constant

    Mat. Zametki, 116:5 (2024),  1100–1143
  3. Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues

    Mat. Zametki, 116:4 (2024),  804–830
  4. On the 125th anniversary of V. A. Fock

    TMF, 220:3 (2024),  407–414
  5. Complex WKB Method (One-Dimensional Linear Problems the Complex Plane)

    Mat. Zametki, 114:6 (2023),  1418–1479
  6. Close Turning Points and the Harper Operator

    Mat. Zametki, 113:5 (2023),  785–790
  7. On Bloch solutions of difference equations

    Funktsional. Anal. i Prilozhen., 56:4 (2022),  3–16
  8. On the Delocalization of a Quantum Particle under the Adiabatic Evolution Generated by a One-Dimensional Schrödinger Operator

    Mat. Zametki, 112:5 (2022),  752–769
  9. On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential

    TMF, 213:3 (2022),  450–458
  10. The complex WKB method for a system of two linear difference equations

    Algebra i Analiz, 33:2 (2021),  298–326
  11. On the spectrum of a non-self-adjoint quasiperiodic operator

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  16–21
  12. Semiclassical Asymptotics for a Difference Schrödinger Equation with Two Coalescent Turning Points

    Mat. Zametki, 109:6 (2021),  948–953
  13. On a self-similar behavior of logarithmic sums

    Zap. Nauchn. Sem. POMI, 506 (2021),  279–292
  14. On monodromy matrices for a difference Schrödinger equation on the real line with a small periodic potential

    Zap. Nauchn. Sem. POMI, 506 (2021),  223–244
  15. On the Hierarchical Behavior of Solutions of the Maryland Equation in the Semiclassical Approximation

    Mat. Zametki, 108:6 (2020),  941–946
  16. The Spectrum and Density of States of the Almost Mathieu Operator with Frequency Represented by a Continued Fraction with Large Elements

    Mat. Zametki, 107:6 (2020),  948–953
  17. To the memory of Sergei Yur'evich Slavyanov

    TMF, 201:2 (2019),  151–152
  18. A Monodromy Matrix for the Almost Mathieu Equation with Small Coupling Constant

    Funktsional. Anal. i Prilozhen., 52:4 (2018),  89–93
  19. Monodromization and Difference Equations with Meromorphic Periodic Coefficients

    Funktsional. Anal. i Prilozhen., 52:1 (2018),  92–97
  20. Semiclassical Asymptotics of the Spectrum of the Subcritical Harper Operator

    Mat. Zametki, 104:6 (2018),  948–952
  21. On adiabatic normal modes in a wedge shaped sea

    Zap. Nauchn. Sem. POMI, 471 (2018),  261–285
  22. Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial

    Algebra i Analiz, 29:2 (2017),  193–219
  23. On minimal entire solutions of the one-dimensional difference Schrödinger equation with the potential $v(z)=e^{-2\pi iz}$

    Zap. Nauchn. Sem. POMI, 461 (2017),  279–297
  24. Stark–Wannier ladders and cubic exponential sums

    Funktsional. Anal. i Prilozhen., 50:3 (2016),  81–85
  25. Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra

    Funktsional. Anal. i Prilozhen., 50:1 (2016),  90–93
  26. Quasiclassical asymptotics of Malyuzhinets functions

    Zap. Nauchn. Sem. POMI, 451 (2016),  178–187
  27. Complex WKB method for difference equations in bounded domains

    Zap. Nauchn. Sem. POMI, 438 (2015),  236–254
  28. Monodromization method in the theory of almost-periodic equations

    Algebra i Analiz, 25:2 (2013),  203–235
  29. On the mathematical work of Vladimir Savel'evich Buslaev

    Algebra i Analiz, 25:2 (2013),  3–36
  30. Complex WKB method for adiabatic perturbations of a periodic Schrödinger operator

    Zap. Nauchn. Sem. POMI, 379 (2010),  142–178
  31. Adiabatic almost-periodic Schrödinger operators

    Zap. Nauchn. Sem. POMI, 379 (2010),  103–141
  32. The Harper equation: monodromization without quasiclassics

    Algebra i Analiz, 8:2 (1996),  65–97
  33. Bloch solutions for difference equations

    Algebra i Analiz, 7:4 (1995),  74–122
  34. The complex WKB method for the Harper equation

    Algebra i Analiz, 6:3 (1994),  59–83

  35. Vladimir Savel'evich Buslaev (obituary)

    Uspekhi Mat. Nauk, 69:1(415) (2014),  163–168


© Steklov Math. Inst. of RAS, 2025