RUS  ENG
Full version
PEOPLE

Barashkov Aleksandr Sergeevich

Publications in Math-Net.Ru

  1. Supplement to the classical result of A.N. Tikhonov on electromagnetic sensing for a medium with thin layers

    Zh. Vychisl. Mat. Mat. Fiz., 63:9 (2023),  1532–1536
  2. Remote determination of parameters of powerful layers with the use of the intermediate model

    Matem. Mod., 32:6 (2020),  111–126
  3. On the feasibility of detecting thin conductive layers from field measurements on the surface of a medium

    Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2127–2138
  4. Heat transfer in a pipe under asymmetric heating under conditions of forced motion of subcooled liquid

    TVT, 38:1 (2000),  61–65
  5. A dual asymptotic model for solving elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 34:8-9 (1994),  1179–1193
  6. A method of estimating the accuracy of the solution of an inverse problem without using a uniqueness theorem

    Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993),  458–463
  7. Solution of an inverse problem for the Helmholtz equation with a quasi-one-dimensional coefficient

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 10,  11–19
  8. Asymptotic behavior of the solutions of a system of Maxwell equations

    Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989),  1182–1194
  9. On the uniqueness of the solution of the problem of the determination of the coefficient of the Helmholtz equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 9,  10–14
  10. Asymptotic forms of the solution of the inverse problem for the Helmholtz equation

    Zh. Vychisl. Mat. Mat. Fiz., 28:12 (1988),  1823–1831
  11. On the uniqueness of quasisolutions of operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 28:6 (1988),  938–940
  12. On an inverse problem of magnetotelluric deep sounding

    Dokl. Akad. Nauk SSSR, 295:1 (1987),  83–86
  13. Determination of the coefficient of Helmholtz's equation from the boundary values of the solution

    Zh. Vychisl. Mat. Mat. Fiz., 26:2 (1986),  242–253
  14. Regular expansion of solutions of singularly perturbed equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 9,  6–9
  15. An inverse problem for the Helmholtz equation in a domain with unknown boundary

    Zh. Vychisl. Mat. Mat. Fiz., 24:2 (1984),  309–314
  16. Reconstruction of the domain of definition of the Helmholtz equation with a small parameter

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 8,  3–7
  17. The uniqueness of the solution of a certain inverse problem

    Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973),  365–372


© Steklov Math. Inst. of RAS, 2024