RUS  ENG
Full version
PEOPLE

Yakovlev Nikolay Nikolayevich

Publications in Math-Net.Ru

  1. Вопросы математического моделирования процесса горения

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  289–327
  2. Mathematical modeling of vibrational combustion

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  69–73
  3. Study of the rayleigh-benard instability by methods of the theory of nonequilibrium phase transitions in the cahn-hillard form

    Eurasian Journal of Mathematical and Computer Applications, 5:2 (2017),  36–65
  4. Introduction to the generalized theory of non-equilibrium Cahn-Hilliard phase transitions (Thermodynamic problems in continuum mechanics)

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017),  437–472
  5. On the reconstruction of the initial stage turbulent diffusion combustion

    Sib. J. Pure and Appl. Math., 16:2 (2016),  50–67
  6. On the inner turbulence paradigm

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015),  155–185
  7. On nonviscous solutions of a multicomponent euler system

    CMFD, 53 (2014),  133–154
  8. Structurization of the instability zone and crystallization

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  229–265
  9. On the dissociation of point systems

    Trudy Mat. Inst. Steklov., 196 (1991),  147–155
  10. A method for finding the densest lattice $k$-fold packing of disks

    Mat. Zametki, 41:5 (1987),  625–636
  11. On the spectrum of the Schrödinger operator with small periodic potential in dimensions two and three

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 2,  77–79
  12. The spectrum of multidimensional pseudodifferential periodic operators

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 3,  80–81
  13. On a narrow lattice $3$-packing and friable lattice $3$-covering in the plane

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 2,  33–37
  14. Asymptotic estimates of the densities of lattice $k$-packings and $k$-coverings, and the structure of the spectrum of the Schrödinger operator with a periodic potential

    Dokl. Akad. Nauk SSSR, 276:1 (1984),  54–57
  15. The densest lattice $8$ -packing on a plane

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5,  8–16


© Steklov Math. Inst. of RAS, 2025