|
|
Publications in Math-Net.Ru
-
Вопросы математического моделирования процесса горения
Tr. Semim. im. I. G. Petrovskogo, 33 (2023), 289–327
-
Mathematical modeling of vibrational combustion
Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 69–73
-
Study of the rayleigh-benard instability by methods of the theory of nonequilibrium phase transitions in the cahn-hillard form
Eurasian Journal of Mathematical and Computer Applications, 5:2 (2017), 36–65
-
Introduction to the generalized theory of non-equilibrium Cahn-Hilliard phase transitions
(Thermodynamic problems in continuum mechanics)
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017), 437–472
-
On the reconstruction of the initial stage turbulent diffusion combustion
Sib. J. Pure and Appl. Math., 16:2 (2016), 50–67
-
On the inner turbulence paradigm
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015), 155–185
-
On nonviscous solutions of a multicomponent euler system
CMFD, 53 (2014), 133–154
-
Structurization of the instability zone and crystallization
Tr. Semim. im. I. G. Petrovskogo, 28 (2011), 229–265
-
On the dissociation of point systems
Trudy Mat. Inst. Steklov., 196 (1991), 147–155
-
A method for finding the densest lattice $k$-fold packing of disks
Mat. Zametki, 41:5 (1987), 625–636
-
On the spectrum of the Schrödinger operator with small periodic potential in dimensions two and three
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 2, 77–79
-
The spectrum of multidimensional pseudodifferential periodic operators
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 3, 80–81
-
On a narrow lattice $3$-packing and friable lattice $3$-covering in the plane
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 2, 33–37
-
Asymptotic estimates of the densities of lattice $k$-packings and $k$-coverings, and the structure of the spectrum of the Schrödinger operator with a periodic potential
Dokl. Akad. Nauk SSSR, 276:1 (1984), 54–57
-
The densest lattice $8$ -packing on a plane
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5, 8–16
© , 2025