RUS  ENG
Full version
PEOPLE

Vorontsov-Velyaminov Pavel Nikolaevich

Publications in Math-Net.Ru

  1. Equilibrium properties of 3-arm star-shaped polyions: an entropic sampling Monte Carlo study

    Nanosystems: Physics, Chemistry, Mathematics, 8:1 (2017),  108–120
  2. Hopping conductivity and dielectric relaxation in Schottky barriers on GaN

    Fizika i Tekhnika Poluprovodnikov, 51:9 (2017),  1235–1242
  3. Entropic sampling of star-shaped polymers with different number of arms: temperature dependencies of structural properties

    Nanosystems: Physics, Chemistry, Mathematics, 6:4 (2015),  513–523
  4. Exact classical stochastic representations of the many-body quantum dynamics

    Nanosystems: Physics, Chemistry, Mathematics, 6:4 (2015),  501–512
  5. Stepwise conformation transitions for a semi-stiff ring polymer confined in a conical trap induced by the increasing external field or by cone's opening angle variation

    Nanosystems: Physics, Chemistry, Mathematics, 4:2 (2013),  225–235
  6. Calculation of the density of states and the thermal properties of polymer chains and stars on a lattice by the Monte Carlo method with the use of the Wang–Landau algorithm

    Num. Meth. Prog., 12:4 (2011),  397–408
  7. Stochastic positive P-representation in problems of quantum statistics. Simulation of one-dimensional Bose-gas with delta-repulsion

    Num. Meth. Prog., 10:2 (2009),  223–247
  8. Calculations of equilibrium properties of quantum systems using the expanded ensemble MC technique

    Num. Meth. Prog., 9:2 (2008),  170–183
  9. A quantum gas in an external field at finite temperatures. An exact expression for density and exited states

    Num. Meth. Prog., 8:4 (2007),  334–351
  10. Entropic sampling of freely-rotating polymer chains

    Num. Meth. Prog., 7:4 (2006),  310–322
  11. Entropic sampling of the flexible polyelectrolyte with the Wang-Landau algorithm

    Num. Meth. Prog., 7:4 (2006),  300–309
  12. Calculating the critical size and properties of a microdrop by the Monte-Carlo method in a generalized ensemble

    TVT, 26:2 (1988),  246–254
  13. Расчет равновесных свойств неидеальной ионной плазмы методами теории физических групп. Границы областей с различной структурой в газовой фазе

    TVT, 24:5 (1986),  998–999
  14. Calculation of the equilibrium properties of a nonideal ionic plasma by the methods of the theory of physical clusters. I. Equilibrium concentration of clusters

    TVT, 21:4 (1983),  625–634
  15. Thermodynamic properties of ion clusters and their effect on the mechanism of homogeneous nucleation in an ion plasma – calculation by the Monte-Carlo method in an $NpT$ ensemble

    TVT, 20:6 (1982),  1025–1031
  16. Microdrop – gas phase equilibrium in a small system. Molecular-dynamic investigation

    TVT, 15:6 (1977),  1165–1172
  17. Monte Carlo calculation of ionic system with mild repulsion

    TVT, 15:6 (1977),  1137–1142
  18. Boundary of ion-pair region for a model ion system – Data of a mathematical experiment

    TVT, 14:2 (1976),  379–382
  19. Internal energy of an ion system – Debye temperature function in a broad range of temperatures and volumes – Computational data by Monte-Carlo method

    TVT, 14:1 (1976),  199–201
  20. Critical point in an ionic system from the results of a mathematical experiment. Comparison with salt melts

    TVT, 13:6 (1975),  1153–1159
  21. Переходы "газ – капля" и "капля – кристалл" в малой системе. Расчет методом молекулярной динамики

    TVT, 13:2 (1975),  302–308
  22. Investigation of phase transitions in argon and Coulomb gas by the Monte-Carlo method using an isothermically isobaric ensemble

    TVT, 8:2 (1970),  277–285


© Steklov Math. Inst. of RAS, 2024