|
|
Publications in Math-Net.Ru
-
Branching diffusion processes in periodic media
Zap. Nauchn. Sem. POMI, 535 (2024), 214–236
-
A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
Zap. Nauchn. Sem. POMI, 535 (2024), 200–213
-
Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph
Teor. Veroyatnost. i Primenen., 68:2 (2023), 277–300
-
Probabilistic approximation of the Schrödinger equation by complex-valued random processes
Zap. Nauchn. Sem. POMI, 526 (2023), 17–28
-
An analogue of the Feynman–Kac formula for the multidimensional Shrödinger equation
Zap. Nauchn. Sem. POMI, 525 (2023), 96–108
-
Prospects for anisotropic superfluidity in a Fermi gas of dysprosium
Kvantovaya Elektronika, 52:6 (2022), 528–531
-
An analogue of the Feynman–Kac formula for a high-order operator
Teor. Veroyatnost. i Primenen., 67:1 (2022), 81–99
-
On a probabilistic approximation of a group of unitary operators
Zap. Nauchn. Sem. POMI, 510 (2022), 211–224
-
Asymptotic behaviour of some branching random walk functionals mean values
Zap. Nauchn. Sem. POMI, 505 (2021), 185–206
-
Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$
Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 78–81
-
Probabilistic approximation of the solution of the Cauchy problem
for the higher-order Schrödinger equation
Teor. Veroyatnost. i Primenen., 65:4 (2020), 710–724
-
Branching random walks on $\mathbf{Z}^d$ with periodic branching sources
Teor. Veroyatnost. i Primenen., 64:2 (2019), 283–307
-
On a limit theorem related to a Cauchy problem solution for the Schrödinger equation with a fractional derivative operator of the order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
Zap. Nauchn. Sem. POMI, 486 (2019), 254–264
-
On the variance of the particle number of the supercritical branching random walk on periodic graphs
Zap. Nauchn. Sem. POMI, 486 (2019), 233–253
-
Limit theorems on convergence to generalized Cauchy type processes
Zap. Nauchn. Sem. POMI, 486 (2019), 214–228
-
Probabilistic approach to Cauchy problem solution for the Schrödinger equation with a fractional derivative of order $\alpha\in\bigcup\limits_{m=3}^{\infty}(m-1, m)$
Zap. Nauchn. Sem. POMI, 474 (2018), 199–212
-
Nonprobabilistic analogues of the Cauchy process
Zap. Nauchn. Sem. POMI, 474 (2018), 183–194
-
A probabilistic approximation of the Cauchy problem solution for the Schrödinger equation with a fractional derivative operator
Zap. Nauchn. Sem. POMI, 466 (2017), 257–272
-
Asymptotic behavior of the mean number of particles of branching random walk on $\mathbf Z^d$ with periodic sources of branching
Zap. Nauchn. Sem. POMI, 466 (2017), 234–256
-
Probabilistic representation for Cauchy problem solution for evolution equation with Riemann–Liouville operator
Teor. Veroyatnost. i Primenen., 61:3 (2016), 417–438
-
A probabilistic representation of the Cauchy problem solution for an evolution equation with the differential operator of the order greater than 2
Zap. Nauchn. Sem. POMI, 454 (2016), 220–237
-
Symmetric $\alpha$-stable distributions for noninteger $\alpha>2$ and related stochastic processes
Zap. Nauchn. Sem. POMI, 442 (2015), 101–117
-
Nonprobabilistic infinitely divisible distributions: the Lévy–Khinchin representation, limit theorems
Zap. Nauchn. Sem. POMI, 431 (2014), 145–177
© , 2024