RUS  ENG
Full version
PEOPLE

Beloshapka Valerii Konstantinovich

Publications in Math-Net.Ru

  1. On the algebraic properties of analytic functions of two variables

    J. Sib. Fed. Univ. Math. Phys., 18:5 (2025),  655–662
  2. Associativity and distributivity of analytic functions

    Mat. Zametki, 118:3 (2025),  355–365
  3. Research activity on the Chair of Theory of Functions and Functional Analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  39–50
  4. Bounded-degree subgroups of the Cremona group in $\mathrm{CR}$-geometry

    Funktsional. Anal. i Prilozhen., 58:4 (2024),  138–141
  5. Geometric constructions in the theory of analytic complexity

    Izv. RAN. Ser. Mat., 88:3 (2024),  3–11
  6. On hypergeometric functions of two variables of complexity one

    J. Sib. Fed. Univ. Math. Phys., 17:2 (2024),  175–188
  7. Измерение сложности функций

    Tr. Mosk. Mat. Obs., 85:1 (2024),  13–25
  8. Analytic Complexity: Functions with One-Dimensional Stabilizer in the Gauge Group

    Mat. Zametki, 115:5 (2024),  679–689
  9. Modification of Poincaré's construction and its application in $CR$-geometry of hypersurfaces in $\mathbf{C}^4$

    Izv. RAN. Ser. Mat., 86:5 (2022),  18–42
  10. Simple solutions of the Burgers and Hopf equations

    Izv. RAN. Ser. Mat., 85:3 (2021),  5–12
  11. On integration of functions of complexity one

    J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  496–502
  12. On the Complextity of the Differential-Algebraic Description of Analytic Complexity Classes

    Mat. Zametki, 105:3 (2019),  323–331
  13. Decomposition of functions of finite analytical complexity

    J. Sib. Fed. Univ. Math. Phys., 11:6 (2018),  680–685
  14. Simple solutions of three equations of mathematical physics

    Tr. Mosk. Mat. Obs., 79:2 (2018),  221–236
  15. Analytic Complexity: Gauge Pseudogroup, Its Orbits, and Differential Invariants

    Trudy Mat. Inst. Steklova, 298 (2017),  58–66
  16. Three families of functions of complexity one

    J. Sib. Fed. Univ. Math. Phys., 9:4 (2016),  416–426
  17. Analytic Complexity of Functions of Several Variables

    Mat. Zametki, 100:6 (2016),  781–789
  18. A Seven-Dimensional Family of Simple Harmonic Functions

    Mat. Zametki, 98:6 (2015),  803–808
  19. Model-surface method: An infinite-dimensional version

    Trudy Mat. Inst. Steklova, 279 (2012),  20–30
  20. Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$

    Izv. RAN. Ser. Mat., 72:3 (2008),  3–18
  21. The Programm of Poincaré as Alternative to Klein's Programm (to Centenary of Publication)

    J. Sib. Fed. Univ. Math. Phys., 1:1 (2008),  63–67
  22. The orbit space of the automorphism group of a model surface of type $(1,2)$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 3,  13–16
  23. Representation of the Group of Holomorphic Symmetries of a Real Germ in the Symmetry Group of Its Model Surface

    Mat. Zametki, 82:4 (2007),  515–518
  24. A Counterexample to the Dimension Conjecture

    Mat. Zametki, 81:1 (2007),  136–139
  25. Vitushkin's Germ Theorem for Engel-Type CR Manifolds

    Trudy Mat. Inst. Steklova, 253 (2006),  7–13
  26. Symmetries of Real Hypersurfaces in Complex 3-Space

    Mat. Zametki, 78:2 (2005),  171–179
  27. Universal Models For Real Submanifolds

    Mat. Zametki, 75:4 (2004),  507–522
  28. Real submanifolds in complex space: polynomial models, automorphisms, and classification problems

    Uspekhi Mat. Nauk, 57:1(343) (2002),  3–44
  29. Polynomial models of real manifolds

    Izv. RAN. Ser. Mat., 65:4 (2001),  3–20
  30. A Cubic Model of a Real Variety

    Mat. Zametki, 70:4 (2001),  503–519
  31. A Quasiperiodic System of Polynomial Models of CR-Manifolds

    Trudy Mat. Inst. Steklova, 235 (2001),  7–35
  32. The normal form of germs of four-dimensional real submanifolds in $\mathbb C^5$ at generic $\mathbb{RC}$-singular points

    Mat. Zametki, 61:6 (1997),  931–934
  33. Homogeneous real hypersurfaces in $\mathbb C^2$

    Mat. Zametki, 60:5 (1996),  760–764
  34. Local invariants and prohibitions on mappings of CR-manifolds

    Mat. Zametki, 60:4 (1996),  588–592
  35. Invariants of CR-manifolds associated with the tangent quadric

    Mat. Zametki, 59:1 (1996),  42–52
  36. Geometric invariants of a $CR$-manifold

    Mat. Zametki, 55:5 (1994),  3–12
  37. On holomorphic transformations of a quadric

    Mat. Sb., 182:2 (1991),  203–219
  38. Construction of the normal form of the equation of a surface of high codimension

    Mat. Zametki, 48:2 (1990),  3–9
  39. A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space

    Mat. Zametki, 47:3 (1990),  17–22
  40. Finite-dimensionality of the group of automorphisms of a real-analytic surface

    Izv. Akad. Nauk SSSR Ser. Mat., 52:2 (1988),  437–442
  41. Convex hypersurfaces in $\mathbf C^n$

    Mat. Zametki, 40:5 (1986),  621–626
  42. Example of a noncontinuable holomorphic transformation of an analytic hypersurface

    Mat. Zametki, 32:1 (1982),  121–123
  43. Estimates for the radius of convergence of power series defining mappings of analytic hypersurfaces

    Izv. Akad. Nauk SSSR Ser. Mat., 45:5 (1981),  962–984
  44. On the dimension of the group of automorphisms of an analytic hypersurface

    Izv. Akad. Nauk SSSR Ser. Mat., 43:2 (1979),  243–266
  45. Functions pluriharmonic on a maniford

    Izv. Akad. Nauk SSSR Ser. Mat., 42:3 (1978),  475–483
  46. On a metric property of analytic sets

    Izv. Akad. Nauk SSSR Ser. Mat., 40:6 (1976),  1409–1414

  47. Evgenii Mikhailovich Chirka (on his 75th birthday)

    Uspekhi Mat. Nauk, 73:6(444) (2018),  204–210
  48. Anatolii Georgievich Vitushkin (on his 70th birthday)

    Uspekhi Mat. Nauk, 57:1(343) (2002),  179–184


© Steklov Math. Inst. of RAS, 2025