RUS  ENG
Full version
PEOPLE

Shaposhnikova Tat'yana Ardolionovna

Publications in Math-Net.Ru

  1. Aperiodical isoperimetric planar homogenization with critical diameter: universal non-local strange term for a dynamical unilateral boundary condition

    Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024),  18–27
  2. Усреднение задачи оптимального управления в критическом случае в перфорированной области с условиями Робина на границе полостей в случае, когда функционал стоимости содержит общего вида интеграл энергии

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  161–173
  3. Homogenization of a parabolic equation in a perforated domain with a unilateral dynamic boundary condition: critical case

    CMFD, 68:4 (2022),  671–685
  4. On the homogenization of an optimal control problem in a domain perforated by holes of critical size and arbitrary shape

    Dokl. RAN. Math. Inf. Proc. Upr., 502 (2022),  11–18
  5. Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case

    Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020),  59–64
  6. A time-dependent strange term arising in homogenization of an elliptic problem with rapidly alternating Neumann and dynamic boundary conditions specified at the domain boundary: the critical case

    Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020),  23–28
  7. Homogenization of a boundary-value problem in a domain perforated by cavities of arbitrary shape with a general nonlinear boundary condition on their boundaries: the case of critical values of the parameters

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  191–219
  8. Scientific heritage of Vladimir Mikhailovich Millionshchikov

    Tr. Semim. im. I. G. Petrovskogo, 30 (2014),  5–41
  9. Averaging of boundary-value problems for the Laplace operator in perforated domains with a nonlinear boundary condition of the third type on the boundary of cavities

    CMFD, 39 (2011),  173–184
  10. Homogenization of the diffusion equation with nonlinear flux condition on the interior boundary of a perforated domain – the influence of the scaling on the nonlinearity in the effective sink-source term

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  161–181
  11. Homogenization of the Variational Inequality Corresponding to a Problem with Rapidly Varying Boundary Conditions

    Mat. Zametki, 82:4 (2007),  538–549
  12. Homogenization of some variational inequalities with restrictions on subsets $\varepsilon$-periodically located along the domain boundary

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 2,  26–37
  13. On the homogenization of variational inequalities in perforated domains with arbitrary perforation density

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 1,  8–16
  14. Homogenizaton of a Nonhomogeneous Signorini Problem for the Poisson Equation in a Periodically Perforated Domain

    Differ. Uravn., 39:3 (2003),  359–366
  15. Averaging of a problem with an obstacle

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2003, no. 5,  8–17
  16. Homogenization of the Neumann Problem in a Domain a Part of Which Is a Set of Channels

    Differ. Uravn., 37:9 (2001),  1250–1257
  17. Homogenization of the boundary-value problem for the biharmonic equation in a domain containing thin canals of small length

    Mat. Sb., 192:10 (2001),  131–160
  18. Homogenization of boundary value problems in domains with rapidly oscillating nonperiodic boundary

    Differ. Uravn., 36:6 (2000),  754–764
  19. On the averaging of boundary value problems in punctured domains of nonperiodic structure

    Differ. Uravn., 34:5 (1998),  647–661
  20. On averaging of elliptic problems in perforated domains with non-periodic structure

    Uspekhi Mat. Nauk, 52:6(318) (1997),  179–180
  21. On boundary-value problems in domains perforated along manifolds

    Uspekhi Mat. Nauk, 52:4(316) (1997),  205–206
  22. On the Dirichlet problem for the biharmonic equation in a domain punctured along manifolds of small dimension

    Dokl. Akad. Nauk, 350:6 (1996),  742–745
  23. On the averaging of the biharmonic equation in a domain punctured along manifolds of small dimension

    Differ. Uravn., 32:6 (1996),  830–842
  24. On the averaging of the Laplace operator in a domain, a part of which contains periodically located channels with Neumann conditions on their boundary

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 5,  14–27
  25. On an averaging problem in a partially punctured domain with a boundary condition of mixed type on the boundary of the holes, containing a small parameter

    Differ. Uravn., 31:7 (1995),  1150–1160
  26. Averaging of solutions of the Dirichlet problem in a partially punctured domain of general form with nonperiodic structure

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 2,  49–55
  27. On a method for constructing approximations in the averaging problem in a partially punctured domain

    Differ. Uravn., 30:11 (1994),  1994–2000
  28. Averaging of the mixed problem for a parabolic equation in a perforated domain

    Uspekhi Mat. Nauk, 41:4(250) (1986),  223–224
  29. Strong $G$-convergence of a sequence of systems of equations of elasticity theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 5,  29–33

  30. К 70-летию Валерия Васильевича Козлова

    Tr. Semim. im. I. G. Petrovskogo, 33 (2023),  3–7
  31. Vasilii Vasilievich Zhikov

    Tr. Semim. im. I. G. Petrovskogo, 32 (2019),  5–7
  32. Vladimir Alexandrovich Kondratiev. July 2, 1935 – March 11, 2010

    CMFD, 39 (2011),  5–10
  33. Olga Arsenjevna Oleinik

    Tr. Semim. im. I. G. Petrovskogo, 28 (2011),  5–7
  34. Vladimir Alexandrovich Kondratiev on the 70th anniversary of his birth

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  5–28
  35. Vladimir Aleksandrovich Kondrat'ev

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 5,  77–79
  36. Ol'ga Arsen'evna Oleinik (obituary)

    Uspekhi Mat. Nauk, 58:1(349) (2003),  165–174
  37. Anatolii Sergeevich Kalashnikov (obituary)

    Uspekhi Mat. Nauk, 55:5(335) (2000),  161–168


© Steklov Math. Inst. of RAS, 2025