RUS  ENG
Full version
PEOPLE

Gavrilova Ol'ga Vital'evna

Publications in Math-Net.Ru

  1. Numerical study of the non-uniquity solutions phenomenon to the Showalter–Sidorov problem for the model of nerve impulse propagation in a rectangular membrane

    J. Comp. Eng. Math., 12:2 (2025),  13–24
  2. Investigation of the uniqueness solution of the Showalter–Sidorov problem for the mathematical Hoff model. Phase space morphology

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024),  49–63
  3. Numerical investigation of the non-uniqueness of solutions of the Showalter–Sidorov problem for the Hoff mathematical model on a rectangle

    J. Comp. Eng. Math., 10:2 (2023),  26–41
  4. Numerical algorithm for finding a solution to a nonlinear filtration mathematical model with a random Showalter–Sidorov initial condition

    J. Comp. Eng. Math., 9:2 (2022),  39–51
  5. Numerical study of the non-uniqueness of solutions to the Showalter–Sidorov problem for a mathematical model of I-beam deformation

    J. Comp. Eng. Math., 9:1 (2022),  10–23
  6. Semilinear models of sobolev type. Non-uniqueness of solution to the Showalter–Sidorov problem

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  84–100
  7. Numerical study of the unique solvability of the Showalter – Sidorov problem for a mathematical model of the propagation of nerve impulses in the membrane

    J. Comp. Eng. Math., 8:3 (2021),  32–48
  8. Morphology of the phase space of one mathematical model of a nerve impulse propagation in the membrane shell

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:3 (2021),  14–25
  9. A numerical study of the optimal control problem for degenerate multicomponent mathematical model of the propagation of a nerve impulse in the system of nerves

    J. Comp. Eng. Math., 7:1 (2020),  47–61
  10. Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:1 (2020),  14–23
  11. Numerical study on the non-uniqueness of solutions to the Showalter–Sidorov problem for one degenerate mathematical model of an autocatalytic reaction with diffusion

    J. Comp. Eng. Math., 6:4 (2019),  3–17
  12. Numerical study of a mathematical model of an autocatalytic reaction with diffusion in a tubular reactor

    J. Comp. Eng. Math., 5:3 (2018),  24–37
  13. Start control and final observation problem for the Fitz Hugh–Nagumo system for the Dirichlet–Showalter–Sidorov condition

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:3 (2018),  12–18
  14. About nonuniqueness of solutions of the Showalter–Sidorov problem for one mathematical model of nerve impulse spread in membrane

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018),  161–168
  15. Optimal control for a mathematical model of nerve impulse spreading

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015),  120–126

  16. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  17. Георгий Анатольевич Свиридюк (к юбилею)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127


© Steklov Math. Inst. of RAS, 2025