|
|
Publications in Math-Net.Ru
-
Factorially solvable rings
Diskr. Mat., 25:3 (2013), 33–37
-
The first digit carry function in the Galois ring
Diskr. Mat., 24:2 (2012), 21–36
-
An algorithm for construction of the annihilator of a polylinear recurring sequence over a finite commutative ring
Diskr. Mat., 23:4 (2011), 134–157
-
Family of maximal period sequences with low cross-correlation over an 8-element ring
Mat. Vopr. Kriptogr., 2:3 (2011), 47–73
-
A family of sequences over the $8$-element ring with low correlation
Mat. Vopr. Kriptogr., 1:4 (2010), 85–109
-
Free shift registers. IV
Mat. Vopr. Kriptogr., 1:2 (2010), 57–92
-
Free shift registers. III
Tr. Diskr. Mat., 11:2 (2008), 63–85
-
Free shift registers. II
Tr. Diskr. Mat., 10 (2007), 123–174
-
Similarity invariants for matrices over a commutative Artinian chain ring
Mat. Zametki, 80:3 (2006), 403–412
-
Periodic functions on a free semigroup
Mat. Sb., 197:10 (2006), 109–128
-
Free shift registers. I
Tr. Diskr. Mat., 9 (2006), 77–109
-
Hopf algebras of linear recurring sequences
Diskr. Mat., 16:2 (2004), 7–43
-
Hopf algebras of linear recurring sequences over rings and modules
Fundam. Prikl. Mat., 9:1 (2003), 113–148
-
Polylinear transforms of linear recurrent sequences over modules
Tr. Diskr. Mat., 7 (2003), 89–113
-
Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring
Mat. Zametki, 71:5 (2002), 677–685
-
Quasi-Frobenius bimodules of functions on a semigroup
Uspekhi Mat. Nauk, 57:6(348) (2002), 167–168
-
Trace representation of linear recurring sequences
Mat. Sb., 193:6 (2002), 123–142
-
Binomial linear complexity of polylinear sequences
Tr. Diskr. Mat., 6 (2002), 82–138
-
Almost uniform linear recurrent sequences over Galois rings and $QF$-modules of characteristic 4
Tr. Diskr. Mat., 5 (2002), 103–158
-
Linear complexity of polylinear sequences
Diskr. Mat., 13:1 (2001), 3–55
-
The representation of trace functions of linear recurrences over rings and modules
Uspekhi Mat. Nauk, 56:6(342) (2001), 157–158
-
Structural properties of linear recurrent sequences over Galois rings and quasi-Frobenius modules of charasteristic 4
Tr. Diskr. Mat., 4 (2001), 91–128
-
Polynomial transformations of linear recurrent sequences over finite commutative rings
Diskr. Mat., 12:3 (2000), 3–36
-
Structural, analitical and statistical properties of linear and polylinear recurrent sequences
Tr. Diskr. Mat., 3 (2000), 155–194
-
Polynomial transformations of linear recurrent sequences over the ring $\mathbf Z_{p^2}$
Diskr. Mat., 11:2 (1999), 40–65
-
The Berlekamp–Massey algorithm over commutative Artinian principal ideal rings
Fundam. Prikl. Mat., 5:4 (1999), 1061–1101
-
The Berlekamp–Massey Algorithm over a Finite Commutative Ring
Probl. Peredachi Inf., 35:2 (1999), 38–50
-
Codes and recurrences over finite rings and modules
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 5, 18–31
-
The Berlekamp–Massey algorithm over finite rings, modules and bimodules
Diskr. Mat., 10:4 (1998), 3–34
-
Properties of linear and polylinear recurrent sequences over Galois rings. I
Tr. Diskr. Mat., 2 (1998), 191–222
-
The exponent of the congruence subgroup of a finite
commutative chain ring
Algebra Logika, 36:6 (1997), 657–674
-
Pseudorandom and polylinear sequences
Tr. Diskr. Mat., 1 (1997), 139–202
-
Representations of linear recurrent sequences of maximum period over a finite field
Diskr. Mat., 7:2 (1995), 34–39
-
Binomial presentation of linear recurring sequences
Fundam. Prikl. Mat., 1:2 (1995), 553–556
-
The first coordinate sequence of a linear recurrence of maximum period over a Galois ring
Diskr. Mat., 6:2 (1994), 88–100
-
Representations over a field of linear recurrences of maximal period over a quotient ring
Uspekhi Mat. Nauk, 49:2(296) (1994), 157–158
-
Structure of the Hopf algebras of linear recurrent sequences
Uspekhi Mat. Nauk, 48:5(293) (1993), 177–178
-
Convolution of linear recurrent sequences
Uspekhi Mat. Nauk, 48:4(292) (1993), 235–236
-
Representations over the ring $\mathbb Z^{p^n}$ of a linear recursive sequence of maximal period over the field $GF(p)$
Diskr. Mat., 4:4 (1992), 96–116
-
Representations of linear recurrent sequences and regular prime numbers
Uspekhi Mat. Nauk, 47:6(288) (1992), 215–216
© , 2025