RUS  ENG
Full version
PEOPLE

Kurakin Vladimir Leonidovich

Publications in Math-Net.Ru

  1. Factorially solvable rings

    Diskr. Mat., 25:3 (2013),  33–37
  2. The first digit carry function in the Galois ring

    Diskr. Mat., 24:2 (2012),  21–36
  3. An algorithm for construction of the annihilator of a polylinear recurring sequence over a finite commutative ring

    Diskr. Mat., 23:4 (2011),  134–157
  4. Family of maximal period sequences with low cross-correlation over an 8-element ring

    Mat. Vopr. Kriptogr., 2:3 (2011),  47–73
  5. A family of sequences over the $8$-element ring with low correlation

    Mat. Vopr. Kriptogr., 1:4 (2010),  85–109
  6. Free shift registers. IV

    Mat. Vopr. Kriptogr., 1:2 (2010),  57–92
  7. Free shift registers. III

    Tr. Diskr. Mat., 11:2 (2008),  63–85
  8. Free shift registers. II

    Tr. Diskr. Mat., 10 (2007),  123–174
  9. Similarity invariants for matrices over a commutative Artinian chain ring

    Mat. Zametki, 80:3 (2006),  403–412
  10. Periodic functions on a free semigroup

    Mat. Sb., 197:10 (2006),  109–128
  11. Free shift registers. I

    Tr. Diskr. Mat., 9 (2006),  77–109
  12. Hopf algebras of linear recurring sequences

    Diskr. Mat., 16:2 (2004),  7–43
  13. Hopf algebras of linear recurring sequences over rings and modules

    Fundam. Prikl. Mat., 9:1 (2003),  113–148
  14. Polylinear transforms of linear recurrent sequences over modules

    Tr. Diskr. Mat., 7 (2003),  89–113
  15. Hopf Algebra Dual to a Polynomial Algebra over a Commutative Ring

    Mat. Zametki, 71:5 (2002),  677–685
  16. Quasi-Frobenius bimodules of functions on a semigroup

    Uspekhi Mat. Nauk, 57:6(348) (2002),  167–168
  17. Trace representation of linear recurring sequences

    Mat. Sb., 193:6 (2002),  123–142
  18. Binomial linear complexity of polylinear sequences

    Tr. Diskr. Mat., 6 (2002),  82–138
  19. Almost uniform linear recurrent sequences over Galois rings and $QF$-modules of characteristic 4

    Tr. Diskr. Mat., 5 (2002),  103–158
  20. Linear complexity of polylinear sequences

    Diskr. Mat., 13:1 (2001),  3–55
  21. The representation of trace functions of linear recurrences over rings and modules

    Uspekhi Mat. Nauk, 56:6(342) (2001),  157–158
  22. Structural properties of linear recurrent sequences over Galois rings and quasi-Frobenius modules of charasteristic 4

    Tr. Diskr. Mat., 4 (2001),  91–128
  23. Polynomial transformations of linear recurrent sequences over finite commutative rings

    Diskr. Mat., 12:3 (2000),  3–36
  24. Structural, analitical and statistical properties of linear and polylinear recurrent sequences

    Tr. Diskr. Mat., 3 (2000),  155–194
  25. Polynomial transformations of linear recurrent sequences over the ring $\mathbf Z_{p^2}$

    Diskr. Mat., 11:2 (1999),  40–65
  26. The Berlekamp–Massey algorithm over commutative Artinian principal ideal rings

    Fundam. Prikl. Mat., 5:4 (1999),  1061–1101
  27. The Berlekamp–Massey Algorithm over a Finite Commutative Ring

    Probl. Peredachi Inf., 35:2 (1999),  38–50
  28. Codes and recurrences over finite rings and modules

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1999, no. 5,  18–31
  29. The Berlekamp–Massey algorithm over finite rings, modules and bimodules

    Diskr. Mat., 10:4 (1998),  3–34
  30. Properties of linear and polylinear recurrent sequences over Galois rings. I

    Tr. Diskr. Mat., 2 (1998),  191–222
  31. The exponent of the congruence subgroup of a finite commutative chain ring

    Algebra Logika, 36:6 (1997),  657–674
  32. Pseudorandom and polylinear sequences

    Tr. Diskr. Mat., 1 (1997),  139–202
  33. Representations of linear recurrent sequences of maximum period over a finite field

    Diskr. Mat., 7:2 (1995),  34–39
  34. Binomial presentation of linear recurring sequences

    Fundam. Prikl. Mat., 1:2 (1995),  553–556
  35. The first coordinate sequence of a linear recurrence of maximum period over a Galois ring

    Diskr. Mat., 6:2 (1994),  88–100
  36. Representations over a field of linear recurrences of maximal period over a quotient ring

    Uspekhi Mat. Nauk, 49:2(296) (1994),  157–158
  37. Structure of the Hopf algebras of linear recurrent sequences

    Uspekhi Mat. Nauk, 48:5(293) (1993),  177–178
  38. Convolution of linear recurrent sequences

    Uspekhi Mat. Nauk, 48:4(292) (1993),  235–236
  39. Representations over the ring $\mathbb Z^{p^n}$ of a linear recursive sequence of maximal period over the field $GF(p)$

    Diskr. Mat., 4:4 (1992),  96–116
  40. Representations of linear recurrent sequences and regular prime numbers

    Uspekhi Mat. Nauk, 47:6(288) (1992),  215–216


© Steklov Math. Inst. of RAS, 2025