RUS  ENG
Full version
PEOPLE

Liashyk Andrii Nikolaevich

Publications in Math-Net.Ru

  1. Rectangular Recurrence Relations in $\mathfrak{gl}_{n}$ and $\mathfrak{o}_{2n+1}$ Invariant Integrable Models

    SIGMA, 21 (2025), 078, 28 pp.
  2. Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models

    TMF, 206:1 (2021),  23–46
  3. Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors

    J. Stat. Mech., 2020, 93104, 31 pp.
  4. Gauss Coordinates vs Currents for the Yangian Doubles of the Classical Types

    SIGMA, 16 (2020), 120, 23 pp.
  5. New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors

    J. Stat. Mech., 2019 (2019), 44001, 24 pp.
  6. Bethe vectors for orthogonal integrable models

    TMF, 201:2 (2019),  153–174
  7. On Bethe vectors in $\mathfrak{gl}_3$-invariant integrable models

    JHEP, 2018 (2018), 018, 31 pp.
  8. Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry

    Nuclear Phys. B, 926 (2018),  256–278
  9. Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$

    SciPost Phys., 4 (2018),  6–30
  10. Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation

    J. Phys. A, 50:3 (2017), 34004, 22 pp.
  11. Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry

    Nuclear Phys. B, 923 (2017),  277–311
  12. Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors

    Uspekhi Mat. Nauk, 72:1(433) (2017),  37–106
  13. Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles

    TMF, 192:2 (2017),  235–249
  14. Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula

    J. Phys. A, 49:45 (2016), 454005, 28 pp.
  15. Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

    Nuclear Phys. B, 911 (2016),  902–927
  16. Trigonometric version of quantum–classical duality in integrable systems

    Nuclear Phys. B, 903 (2016),  150–163
  17. Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models

    SIGMA, 12 (2016), 099, 22 pp.


© Steklov Math. Inst. of RAS, 2025