RUS  ENG
Full version
PEOPLE

Seplyarskiy Boris Semionovich

Publications in Math-Net.Ru

  1. SHS of metal ceramics based on titanium carbide using various methods of forming a complex metal binder

    Fizika Goreniya i Vzryva, 61:4 (2025),  52–65
  2. Experimental and theoretical study of the influence of porous medium structures and impurity gas release on Ti–Si–C combustion

    Fizika Goreniya i Vzryva, 60:5 (2024),  76–85
  3. Combustion macrokinetics of titanium containing mixtures: effect of mixture structure and titanium particle size

    Fizika Goreniya i Vzryva, 60:3 (2024),  19–31
  4. Особенности тепло- и массообмена при горении гранулированной смеси $\rm Zr + 0.5\rm C$ в спутном потоке аргона

    TVT, 62:4 (2024),  579–588
  5. Convective and conductive combustion modes for granular $\rm Ti$$\rm C$$\rm B$ mixtures. Determination of the heat transfer coefficient between filtering gas and granules

    TVT, 62:1 (2024),  83–94
  6. Reason for the increasing burning rate of $\mathrm{Ti} +\mathrm{C}$ powder mixture when diluted with copper

    Fizika Goreniya i Vzryva, 59:3 (2023),  100–108
  7. Macrokinetics of combustion of powder and granulated titanium mixtures with different allotropic forms of carbon

    Fizika Goreniya i Vzryva, 58:3 (2022),  110–116
  8. Combustion macrokinetics of granulated $(\mathrm{Ti}+\mathrm{C})-\mathrm{Ni}$ mixtures. Impact of grain size

    Fizika Goreniya i Vzryva, 58:2 (2022),  58–63
  9. Experimental-theoretical determining of the interphase heat transfer coefficient in the process of combustion of a granular SHS mixture in a gas flow

    TVT, 60:1 (2022),  81–86
  10. Combustion modes of the $\mathrm{Ti}+\mathrm{C}$ granular mixture with different content of gasifying additive

    Fizika Goreniya i Vzryva, 57:3 (2021),  88–96
  11. Passivation of compact samples from pyrophoric iron nanopowders during their interaction with air

    Fizika Goreniya i Vzryva, 57:3 (2021),  79–87
  12. Effect of a $\mathrm{Ti}+\mathrm{C}$ granule size on combustion in a nitrogen flow

    Fizika Goreniya i Vzryva, 57:1 (2021),  65–71
  13. The chain mechanism of the effect of dichlorodifluoromethane additives on the combustion of hydrogen and methane in oxygen and air

    Zhurnal Tekhnicheskoi Fiziki, 91:6 (2021),  895–903
  14. Interaction dynamics between compacted pyrophoric nickel nanopowders and air

    Mendeleev Commun., 31:4 (2021),  567–569
  15. Effect of initial temperature and mechanical activation on synthesis in a $\mathrm{Ti}+\mathrm{Al}$ system

    Fizika Goreniya i Vzryva, 56:3 (2020),  69–77
  16. Interaction of compact samples made of pyrophoric iron nanopowders with air

    Mendeleev Commun., 30:3 (2020),  380–382
  17. Dependences of the burning rate and phase composition of condensed products of a $\mathrm{Ti}+\mathrm{Ni}$ mixture on the mechanical activation time

    Fizika Goreniya i Vzryva, 55:3 (2019),  63–70
  18. Convective combustion of a $\mathrm{Ti}+0.5\mathrm{C}$. Granulated mixture. domain of existence and fundamental phenomena

    Fizika Goreniya i Vzryva, 55:3 (2019),  57–62
  19. Synthesis of tungsten nanopowders and modes of their combustion and passivation

    Mendeleev Commun., 29:3 (2019),  355–357
  20. The modes of combustion of copper nanopowders

    Mendeleev Commun., 28:4 (2018),  447–449
  21. Combustion and passivation of nickel nanoparticles

    Mendeleev Commun., 27:6 (2017),  631–633
  22. Passivation of iron nanoparticles at subzero temperatures

    Mendeleev Commun., 27:5 (2017),  482–484
  23. Combustion of the Ti + $x$C (1 $>x>$ 0.5) powder and granular mixtures

    Fizika Goreniya i Vzryva, 52:6 (2016),  51–59
  24. Impact of mechanical activation on the burning rate of pressed and bulk-density samples from a Ni + Al mixture

    Fizika Goreniya i Vzryva, 52:3 (2016),  59–64
  25. Synthesis and characterization of passivated iron nanoparticles

    Mendeleev Commun., 26:6 (2016),  549–551
  26. Temporal characteristics of ignition and combustion of iron nanopowders in the air

    Mendeleev Commun., 26:5 (2016),  452–454
  27. Interaction of the laminar flames of natural gas–oxygen mixtures with planar obstacles, diffusers and confusers

    Mendeleev Commun., 26:1 (2016),  61–63
  28. Interaction of the laminar flames of methane-air mixtures with close-meshed spherical and planar obstacles in a closed cylindrical reactor under spark discharge initiation

    CPM, 17:2 (2015),  183–191
  29. Influence of humidity on the features of combustion of powder and granulated Ti+0.5C mixes in a coflow of inert gas

    CPM, 17:1 (2015),  23–33
  30. Penetration of methane–oxygen flames through spherical and planar obstacles in a closed cylindrical reactor

    Mendeleev Commun., 25:4 (2015),  304–306
  31. Dependence of burning velocity on the sample size in the nonactivated and mechanically activated Ni + Al systems

    Mendeleev Commun., 25:1 (2015),  67–69
  32. Dependence of burning rate on sample size in the Ni + Al system

    Fizika Goreniya i Vzryva, 50:4 (2014),  29–35
  33. Combustion behavior of a Ti + TiC mixture in a nitrogen coflow

    Fizika Goreniya i Vzryva, 50:3 (2014),  61–67
  34. Non-steady Propagation of single and Counter Hydrogen and Methane Flames in Initially Motionless Gas

    Mendeleev Commun., 24:5 (2014),  308–310
  35. Influence of humidity on the combustion of powdered and granulated Ti + 0.5C mixtures

    Mendeleev Commun., 24:4 (2014),  242–244
  36. Influence of an acoustic resonator on flame propagation regimes in spark initiated H2 combustion in a cylindrical reactor near the lower detonation limit

    Mendeleev Commun., 24:1 (2014),  50–52
  37. Experimental investigation of combustion of a gasless pelletized mixture of Ti + 0.5C in argon and nitrogen coflows

    Fizika Goreniya i Vzryva, 49:5 (2013),  55–63
  38. Cellular combustion at the transition of a spherical flame front to a flat front at the initiated ignition of methane–air, methane–oxygen and n-pentane–air mixtures

    Mendeleev Commun., 23:6 (2013),  358–360
  39. Interaction of the Laminar Flames of Methane–air Mixtures with Close-meshed Spherical and Planar Obstacles in a Closed Cylindrical Reactor Under Spark Discharge Initiation

    Mendeleev Commun., 23:3 (2013),  163–165
  40. Investigation into Spontaneous Ignition of Hydrogen–air Mixtures in a Heated Reactor at Atmospheric Pressure by High-speed Cinematography

    Mendeleev Commun., 22:4 (2012),  222–224
  41. Suppression of the ignition of coal powders in the presence of oxygen and natural gas with small additives of octadecafluorodecahydronaphthalene vapour

    Mendeleev Commun., 22:3 (2012),  154–156
  42. Investigation into the ignition of coal powders in the presence of oxygen and natural gas by means of high-speed cinematography

    Mendeleev Commun., 22:1 (2012),  47–49
  43. Combustion of the gasless system Ti + 0.5C in a nitrogen coflow

    Fizika Goreniya i Vzryva, 47:3 (2011),  52–59
  44. Self-purification effect in the synthesis of titanium carbonitride in a combustion regime

    Mendeleev Commun., 21:5 (2011),  289–290
  45. Initiation and propagation of laminar spherical flames at atmospheric pressure†

    Mendeleev Commun., 21:4 (2011),  218–220
  46. Investigation into the combustion of lean hydrogen–air mixtures at atmospheric pressure by means of high-speed cinematography

    Mendeleev Commun., 21:4 (2011),  215–217
  47. High-speed colour cinematography of the spontaneous ignition of propane–air and n-pentane–air mixtures

    Mendeleev Commun., 21:1 (2011),  31–33
  48. Mechanism of reaction-front propagation in the Cr$_2$O$_3$ + 2Al mixture

    Fizika Goreniya i Vzryva, 46:3 (2010),  69–74
  49. Formation of threadlike nanostructures of silicon and silicon carbide by chemical vapor deposition

    Mendeleev Commun., 20:6 (2010),  357–358
  50. Concentration limits of combustion in rich hydrogen–air mixtures in the presence of inhibitors

    Mendeleev Commun., 20:5 (2010),  296–298
  51. Thermal ignition of coal powders in the presence of natural gas, oxygen and chemically active additives

    Mendeleev Commun., 20:2 (2010),  98–100
  52. Combustion of Ti+0.5C and Ti+C mixtures of bulk density in inert gas coflow

    Fizika Goreniya i Vzryva, 45:1 (2009),  30–37
  53. Investigation into self-ignition in chain oxidation of hydrogen, natural gas and isobutene by means of high-speed colour cinematography

    Mendeleev Commun., 19:6 (2009),  346–349
  54. Features of initiation of spherical flames in mixtures of natural gas and isobutylene with oxygen in the presence of inert additives

    Mendeleev Commun., 19:4 (2009),  230–232
  55. On the nature of an upper concentration limit of flame propagation in an H2+air mixture

    Mendeleev Commun., 19:4 (2009),  227–229
  56. Gaseous nature of the reaction of Si–N bond formation in self-propagation high-temperature synthesis of silicon nitride by means of an azide method

    Mendeleev Commun., 19:1 (2009),  45–46
  57. Dynamic combustion regimes of the Ti–(Ti+0.5C) layered system in a concurrent nitrogen flow

    Fizika Goreniya i Vzryva, 44:6 (2008),  44–51
  58. Thermal ignition of coal–gas suspensions containing natural gas and oxygen

    Mendeleev Commun., 18:6 (2008),  340–341
  59. Numerical investigation of the effects of surface recombination and initiation for laminar hydrogen flames at atmospheric pressure

    Mendeleev Commun., 18:4 (2008),  220–222
  60. Flame propagation limits in H2+air mixtures in the presence of small inhibitor additives

    Mendeleev Commun., 18:2 (2008),  105–108
  61. Моделирование зажигания и горения пористой шихты в фильтрационном CBC-реакторе

    Matem. Mod. Kraev. Zadachi, 2 (2007),  103–109
  62. Influence of Cr(CO)6 and Mo(CO)6 on the critical conditions for ignition and the velocities of flame propagation for the chain-branching oxidation of hydrogen and propylene

    Mendeleev Commun., 16:5 (2006),  282–284
  63. Моделирование работы газогенератора с пиротехническим зарядом при наличии жидкофазных продуктов

    Matem. Mod. Kraev. Zadachi, 2 (2006),  14–21
  64. Моделирование работы газогенератора с пиротехническим зарядом средней пористости с учетом фильтрационных затруднений

    Matem. Mod. Kraev. Zadachi, 2 (2005),  24–34
  65. Mathematical modeling of chemical conversion in thin-layer exothermic mixtures under periodic electric-spark discharges

    Fizika Goreniya i Vzryva, 40:3 (2004),  59–68
  66. Analysis of the critical conditions for ignition of gas–particle mixtures by a heated body with pulsed energy supply

    Fizika Goreniya i Vzryva, 40:2 (2004),  3–12
  67. Разработка и анализ математической модели газовыделения в газогенераторе с высокой пористостью заряда

    Matem. Mod. Kraev. Zadachi, 2 (2004),  229–239
  68. Approximate analytical method for calculating the time characteristics of ignition of a gas mixture by a heated body

    Fizika Goreniya i Vzryva, 39:5 (2003),  13–27
  69. Convective combustion of “gasless” systems

    Fizika Goreniya i Vzryva, 37:4 (2001),  73–81
  70. Ignition of porous bodies under conditions of counterflow nonstationary filtration of a gas

    Fizika Goreniya i Vzryva, 36:4 (2000),  31–41
  71. Effect of heating on the structure and existence limits of the combustion front in two-layer specimens

    Fizika Goreniya i Vzryva, 35:4 (1999),  67–74
  72. Ignition of porous materials by gas filtration (unsteady downstream filtration)

    Fizika Goreniya i Vzryva, 35:1 (1999),  49–59
  73. Ignition of condensed systems interacting through a layer of high-melting product

    Fizika Goreniya i Vzryva, 31:4 (1995),  3–9
  74. Ignition mechanisms in condensed systems using an incandescent surface for a parabolic interaction law

    Fizika Goreniya i Vzryva, 30:6 (1994),  8–15
  75. Ignition of condensed systems with gas filtration

    Fizika Goreniya i Vzryva, 27:1 (1991),  3–12
  76. Analysis of critical ignition conditions of a system of heating foci

    Fizika Goreniya i Vzryva, 26:6 (1990),  16–20
  77. Ignition of condensed materials in the presence of heat losses on the lateral surface

    Fizika Goreniya i Vzryva, 26:5 (1990),  3–9
  78. Ignition features for a heated surface of condensed substance with occurrence of two successive exothermic reactions

    Fizika Goreniya i Vzryva, 26:2 (1990),  29–33
  79. Second order combustion wave propagation during occurrence of two successive exothermic reactions

    Fizika Goreniya i Vzryva, 26:1 (1990),  52–59
  80. Analysis of the unsteady pattern of the heating site ignition

    Fizika Goreniya i Vzryva, 25:6 (1989),  9–13
  81. Nonstationary theory of condensed substance ignition by a hot surface

    Dokl. Akad. Nauk SSSR, 300:1 (1988),  96–99
  82. Phase transitions in an inverse wave of filtration combustion

    Fizika Goreniya i Vzryva, 19:4 (1983),  95–99
  83. Theory of filtrational combustion

    Fizika Goreniya i Vzryva, 16:1 (1980),  36–45
  84. Inversion of the combustion wave structure in a porous medium during the gas blowing

    Dokl. Akad. Nauk SSSR, 249:3 (1979),  585–589
  85. Propagation of exothermic reaction in a porous medium during the gas blowing

    Dokl. Akad. Nauk SSSR, 241:1 (1978),  72–75
  86. Theory of filtration combustion of metals

    Fizika Goreniya i Vzryva, 12:3 (1976),  323–332
  87. Ignition of metal particles with a logarithmic oxidation law

    Fizika Goreniya i Vzryva, 9:4 (1973),  489–496


© Steklov Math. Inst. of RAS, 2025