|
|
Publications in Math-Net.Ru
-
Multipole representation of the gravitational field for asteroid (16) Psyche
Zh. Vychisl. Mat. Mat. Fiz., 63:12 (2023), 2160
-
Spacecraft with Periodic Mass Redistribution:
Regular and Chaotic Behaviour
Rus. J. Nonlin. Dyn., 18:4 (2022), 639–649
-
On the approximation of a nearly dynamically symmetric rigid body by two balls
Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2105–2111
-
Libration Points Inside a Spherical Cavity of
a Uniformly Rotating Gravitating Ball
Rus. J. Nonlin. Dyn., 17:4 (2021), 413–427
-
Inertial Characteristics of Higher Orders and Dynamics in a Proximity of a Small Celestial Body
Rus. J. Nonlin. Dyn., 16:2 (2020), 259–273
-
Asymptotic Invariant Surfaces for Non-Autonomous Pendulum-Type Systems
Regul. Chaotic Dyn., 25:1 (2020), 121–130
-
Sensitivity of the Euler–Poinsot tensor values to the choice of the body surface triangulation mesh
Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020), 1764–1776
-
On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies
Nelin. Dinam., 14:1 (2018), 45–52
-
On the gravity of dumbbell-like bodies represented by a pair of intersecting balls
Nelin. Dinam., 13:2 (2017), 243–256
-
Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point
Nelin. Dinam., 12:2 (2016), 179–196
-
Vibration points of rotating “compexified” triangle
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 25–31
-
An estimate for the number of relative equilibria in the motion of a plane rigid body and a material point under mutual attraction
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 6, 37–41
-
Relative equilibria in the motion of a triangle and a point under mutual attraction
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 2, 45–51
© , 2024