RUS  ENG
Full version
PEOPLE

Braverman Mikhail Sh

Publications in Math-Net.Ru

  1. Computability of Julia sets

    Mosc. Math. J., 8:2 (2008),  185–231
  2. Characterization of probability law by absolute moments of its partial sums

    Teor. Veroyatnost. i Primenen., 40:2 (1995),  270–285
  3. On Rosenthal's inequality and rearrangement invariant spaces

    Sibirsk. Mat. Zh., 34:1 (1993),  32–37
  4. The Rosenthal inequality in symmetric spaces

    Funktsional. Anal. i Prilozhen., 25:1 (1991),  58–60
  5. Independent random variables in symmetric spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  8–14
  6. The Rosenthal inequality and characterization of the spaces $L_p$

    Sibirsk. Mat. Zh., 32:3 (1991),  31–38
  7. On Symmetric Spaces and Sequences of Independent Random Variables

    Teor. Veroyatnost. i Primenen., 34:3 (1989),  561–565
  8. An Inequality for Absolute Pseudomoments

    Teor. Veroyatnost. i Primenen., 33:4 (1988),  773–777
  9. On a Method of Characterization of Probability Distributions

    Teor. Veroyatnost. i Primenen., 32:3 (1987),  552–556
  10. Symmetric spaces and sequences of independent random variables

    Funktsional. Anal. i Prilozhen., 19:4 (1985),  78–79
  11. Random variables with infinitely divisible distributions, and symmetric spaces

    Sibirsk. Mat. Zh., 26:2 (1985),  36–50
  12. Subspaces generated in the spaces $L_p$ ($2<p<\infty$) by random processes

    Sibirsk. Mat. Zh., 26:1 (1985),  30–36
  13. The characteristic properties of normal and stable distributions

    Teor. Veroyatnost. i Primenen., 30:3 (1985),  440–448
  14. Subspaces of symmetric spaces generated by independent random variables

    Sibirsk. Mat. Zh., 25:3 (1984),  30–39
  15. Operators in spaces $L_p$, generated by random processes

    Dokl. Akad. Nauk SSSR, 271:1 (1983),  15–16
  16. Additivity of the variance is a characteristic property of the Hilbert space $L_2(\Omega,A,\mu)$

    Funktsional. Anal. i Prilozhen., 17:3 (1983),  66–68
  17. Subspaces of the spaces $L_p$ generated by stochastic processes

    Funktsional. Anal. i Prilozhen., 17:1 (1983),  67
  18. Complementability of subspaces generated by independent functions in a symmetric space

    Funktsional. Anal. i Prilozhen., 16:2 (1982),  66–67
  19. Finite-dimensional subspaces of symmetric spaces

    Sibirsk. Mat. Zh., 23:1 (1982),  12–24
  20. A characteristic of symmetrical spaces

    Funktsional. Anal. i Prilozhen., 15:2 (1981),  65–66
  21. Characteristic properties of $\mathscr{L}_p$ spaces

    Dokl. Akad. Nauk SSSR, 255:2 (1980),  270–272
  22. The Hardy–Littlewood property for symmetric spaces

    Sibirsk. Mat. Zh., 18:3 (1977),  522–540
  23. Extension of linear functionals in Banach spaces of measurable functions

    Mat. Zametki, 20:5 (1976),  733–739
  24. Isometries of symmetric spaces

    Dokl. Akad. Nauk SSSR, 217:2 (1974),  257–259
  25. Convex sets in functional spaces

    Funktsional. Anal. i Prilozhen., 8:1 (1974),  73–74
  26. Geometric properties of symmetric spaces

    Sibirsk. Mat. Zh., 15:3 (1974),  675–679


© Steklov Math. Inst. of RAS, 2024