RUS  ENG
Full version
PEOPLE

Khokhlov Andrew Vladimirovich

Publications in Math-Net.Ru

  1. Creep curves generated by a nonlinear flow model of tixotropic viscoelastoplastic media taking into account structure evolution

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 4,  42–51
  2. Equilibruim point and phase portrait of flow model for thixotropic media with consideration of the structure evolution

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 4,  30–39
  3. Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 5,  31–39
  4. On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1,  39–46
  5. Criteria of non-monotonicity and negativity of the Poisson coefficient for isotropic viscoelastic materials described by the nonlinear Rabotnov relation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 3,  32–38
  6. Properties of the strain rate sensitivity function produced by the linear viscoelasticity theory and existence of its maximum with respect to strain and strain rate

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  469–505
  7. Exact solution of the boundary value problem for strain and stress fields in a thick tube made of physically non-linear elasto-viscoplastic material under given internal and external pressures

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:1 (2020),  44–54
  8. Effect of the initial stage of strain on the properties of relaxation curves generated by the Rabotnov nonlinear relation for viscoelastic materials

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 4,  28–33
  9. Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on Poisson's ratio evolution based on the linear viscoelasticity theory

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  671–704
  10. Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  304–340
  11. Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional Kelvin–Voigt models

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019),  56–67
  12. A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 2,  59–63
  13. Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018),  293–324
  14. Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018),  65–95
  15. Comparative analysis of creep curves properties generated by linear and nonlinear heredity theories under multi-step loadings

    Mathematical Physics and Computer Simulation, 21:2 (2018),  27–51
  16. Behavior types and features of lateral strain and Poisson's ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018),  65–77
  17. Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 5,  26–31
  18. Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3,  44–47
  19. Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  326–361
  20. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017),  160–179
  21. Properties of a nonlinear Maxwell-type model of viscoelasticity with two material functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 6,  36–41
  22. Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016),  524–543
  23. Stable subsets of modules and the existence of a unit in associative rings

    Mat. Zametki, 61:4 (1997),  596–611


© Steklov Math. Inst. of RAS, 2025