RUS  ENG
Full version
PEOPLE

Gadzhimirzaev Ramis Makhmudovich

Publications in Math-Net.Ru

  1. Jackson-type theorem on approximation by algebraic polynomials in the uniform metric with Laguerre weight

    Mat. Zametki, 116:1 (2024),  34–44
  2. Convergence of the Fourier Series in Meixner–Sobolev Polynomials and Approximation Properties of Its Partial Sums

    Mat. Zametki, 115:3 (2024),  330–347
  3. Approximation properties of de la Vallee Poussin means of partial Fourier series in Meixner-Sobolev polynomials

    Mat. Sb., 215:9 (2024),  77–98
  4. Basis property of the Legendre polynomials in variable exponent Lebesgue spaces

    Mat. Sb., 215:2 (2024),  103–119
  5. Estimates for the convergence rate of a Fourier series in Laguerre–Sobolev polynomials

    Sibirsk. Mat. Zh., 65:4 (2024),  622–635
  6. On the approximative properties of Fourier series in Laguerre–Sobolev polynomials

    Sibirsk. Mat. Zh., 65:1 (2024),  38–51
  7. On Approximation Properties of Fourier Series in Jacobi Polynomials $P_n^{\alpha-r,-r}(x)$ Orthogonal in the Sense of Sobolev

    Mat. Zametki, 111:6 (2022),  803–818
  8. Approximation properties of the Vallée-Poussin means similar to the partial sums of Fourier series in Laguerre–Sobolev polynomials

    Sibirsk. Mat. Zh., 63:3 (2022),  545–561
  9. Representation of the solution of the Cauchy problem for a difference equation by a Fourier series in Meixner - Sobolev polynomials

    Daghestan Electronic Mathematical Reports, 2021, no. 16,  74–82
  10. Two-dimensional limit series in ultraspherical Jacobi polynomials and their approximative properties

    Izv. Saratov Univ. Math. Mech. Inform., 21:4 (2021),  422–433
  11. Approximation Properties of the Vallée-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials

    Mat. Zametki, 110:4 (2021),  483–497
  12. Estimates for Sobolev-orthonormal functions and generated by Laguerre functions

    Probl. Anal. Issues Anal., 10(28):1 (2021),  23–37
  13. On the uniform convergence of the Fourier series by the system of polynomials generated by the system of Laguerre polynomials

    Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020),  416–423
  14. Integral estimates for Laguerre polynomials with exponential weight function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4,  16–25
  15. Approximation of discrete functions using special series by modified Meixner polynomials

    Sib. Èlektron. Mat. Izv., 17 (2020),  395–405
  16. A numerical method for solving the Cauchy problem for ODEs using a system of polynomials generated by a system of modified Laguerre polynomials

    Daghestan Electronic Mathematical Reports, 2019, no. 12,  13–24
  17. Estimate of the Lebesgue Function of Fourier Sums in Terms of Modified Meixner Polynomials

    Mat. Zametki, 106:4 (2019),  519–530
  18. Sobolev-orthonormal system of functions generated by the system of Laguerre functions

    Probl. Anal. Issues Anal., 8(26):1 (2019),  32–46
  19. Fast algorithm for finding approximate solutions to the Cauchy problem for ODE

    Daghestan Electronic Mathematical Reports, 2018, no. 10,  41–49
  20. Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines

    Daghestan Electronic Mathematical Reports, 2018, no. 9,  1–6
  21. Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials

    Izv. Saratov Univ. Math. Mech. Inform., 18:1 (2018),  17–24
  22. Approximative properties of Fourier–Meixner sums

    Probl. Anal. Issues Anal., 7(25):1 (2018),  23–40
  23. Approximative properties of special series in Meixner polynomials

    Vladikavkaz. Mat. Zh., 20:3 (2018),  21–36
  24. Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums

    Daghestan Electronic Mathematical Reports, 2017, no. 7,  61–65
  25. Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation

    Daghestan Electronic Mathematical Reports, 2017, no. 7,  29–39
  26. Difference equations and Sobolev orthogonal polynomials, generated by Meixner polynomials

    Vladikavkaz. Mat. Zh., 19:2 (2017),  58–72
  27. Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems

    Daghestan Electronic Mathematical Reports, 2016, no. 6,  31–60
  28. The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  388–395
  29. On the identification of the parameters of linear systems using Chebyshev polynomials of the first kind and Chebyshev polynomials orthogonal on a uniform grid

    Daghestan Electronic Mathematical Reports, 2014, no. 2,  1–32


© Steklov Math. Inst. of RAS, 2024